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1. Basics of Probability

Probability has its origins in correspondence discussing the mathemat-
ics of games of chance between Blaise Pascal and Pierre de Fermat
in the 17th century, and was formalized and rendered axiomatic as a
distinct branch of mathematics by Andrey Kolmogorov in the 20th cen-
tury.

The first attempt at mathematical rigour in the field of probability, championed by Pierre-Simon Laplace,
is now known as the classical definition: probability is shared equally between all the possible
outcomes, provided these outcomes can be deemed equally likely.

Two interpretations of probability :
a) Frequentist (this course) If we denote by na the number of occurrences of an event A in n

https://g.co/kgs/G5i8tn
https://g.co/kgs/AMa8sw
https://g.co/kgs/DGipHw
https://g.co/kgs/n5f5w5
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trials, then if

lim
n→+∞

na
n

= p (1.1)

we say that the probability of A is p, or P(A) = p.
• Data are a repeatable random sample - there is a frequency
• Parameters (e.g. p) are fixed and unknown

b) Bayesian (not covered here)
• Parameters are random variables
• Data are fixed but can be updated.
• More info...

→ NOVA episode: Prediction by the numbers

1.1 Histograms
For a specific set of experimental data, a histogram shows the relative frequencies of the different
observed values of a single variable. They may be constructed as follows.

1. select a range on the x-axis that is sufficient to cover the largest and smallest values among
the set of data,

2. divide this range in “convenient” intervals or bins.
3. the y-axis can be either (i) the number of observations within each bin among the total

number of observations, or (ii) the fraction of the total number.

→ Google image search for histograms in engineering
→ Galton machine video
→ Online histogram maker
→ Google public data

1.2 Terminology and set theory
To understand probability it helps to understand basic set theory. To illustrate the definitions
below, we consider the example of a dice roll that generates outcomes in the set {1,2,3,4,5,6}.

Experiment: An action with an uncertain outcome, e.g. a dice roll.

Sample space, S: The set of all possible outcomes of an experiment. In the example. S =
{1,2,3,4,5,6}.

Event: Any subset of the sample space, A⊂ S would be an event, e.g. A= {1,3,5}. We say
that the event has occurred if any of the outcomes in the event has happened.

Elementary event, ω: an event which contains only a single outcome in the sample space, e.g.
ω = {2}.
aka: basic outcome or simple event.

http://www.stat.ufl.edu/archived/casella/Talks/BayesRefresher.pdf
https://www.pbs.org/video/prediction-by-the-numbers-hg2znc/
http://bit.ly/2CXkSBi
http://www.youtube.com/watch?NR=1&v=AUSKTk9ENzg
http://www.shodor.org/interactivate/activities/Histogram/
http://www.google.com/publicdata/directory
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Venn diagrams
A Venn diagram shows all possible logical relations
between a finite collection of different sets. These
diagrams depict basic outcomes as points in the
plane, and events as regions inside closed curves.

For the definitions below, let A and B be the events A= {1,2,3,4} and B = {4,5,6}.
Intersection of sets, A∩B. The set of all outcomes that are both in A and B is called the

intersection of A and B. In the example A∩B = {4}

Union of sets, A∪B. The set of all outcomes that are in either of A and B is called the union
of A and B. In the example A∪B = {1,2,3,4,5,6}

Complement of set, Ac. The set of all outcomes that are not in A, but are in S is called the
complement of A. In the example Ac = {5,6}.
Note: Ā and A′ are also common notation for complement.

Mutually exclusive (ME) events. Events A and B are mutually exclusive if

A∩B = ∅

where ∅ is the empty set.

Collectively exhaustive (CE) events. Events A and B are collectively exhaustive if

A∪B = S

Division. Events A1, . . . ,An form a division of the sample space S if
n⋃
k=1

Ak = S, and Ai∩Aj = ∅ i 6= j.
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Notation. For events A1, . . . ,An :
•

n⋃
k=1

Ak = A1∪A2 · · ·∪An and
n⋂
k=1

Ak = A1∩A2 · · ·∩An.

For variables x1, . . . ,xn :
•

n∑
k=1

xk = x1 +x2 · · ·+xn and
n∏
k=1

xk = x1x2 . . .xn.

→ image source

https://efofexnews.files.wordpress.com/2016/02/gfbdbfba.png?w=640
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Example 1. A coin is tossed twice. Let H stand for heads and T for tails. So:
a) the elementary events are HH, HT, TH and TT
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b) the sample space is S = {HH, HT, TH, TT}

Example 2. Suppose the travel time between two major cities A and B by air is 7 or 8 hr if the
flight is nonstop; however, if there is one stop, the travel time would be 10, 11, or 12 hr. A
nonstop flight between A and B would cost $1000, whereas with one stop the cost is only $650.
Then, between cities B and C, all flights are nonstop requiring 2 or 3 hours at a cost of $250.
(There is no flight from A to C)
For a passenger wishing to travel from city A to city C,
(a) What is the possibility space or sample space of his travel times from A to B? From A to C?
(b) What is the sample space of his travel cost from A to B?
(c) If T=travel time from city A to city C, and S=cost of travel from A to C, what is the sample
space of T and S?

Solution: (a) Sample space of travel time from A to B = {7, 8, 10, 11, 12}
Sample space of travel time from A to C = {9, 10, 11, 12, 13, 14, 15}
(b) Sample space of travel cost from A to B = {650, 1000}
(c) Sample space of T = {9, 10, 11, 12, 13, 14, 15}
Sample space of S = {900, 1250}
Sample space of T and S = {{9, 1250}, {10, 1250}, {11, 1250}, {12, 900}, {13, 900}, {14, 900},
{15, 900}} �

1.2.1 Basic Laws
Commutative Laws

A∪B =B∪A
A∩B =B∩A

Associative Laws

(A∪B)∪C = A∪ (B∪C)
(A∩B)∩C = A∩ (B∩C)

Distributive Laws

(A∪B)∩C = (A∩C)∪ (B∩C)
(A∩B)∪C = (A∪C)∩ (B∪C)
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Note

A∪∅= A

A∩∅= ∅
A∪S = S

A∩S = A

A∪A= A

A∩A= A

(Ac)c = A

The intersection “is like” multiplication, and the union “is like” addition, but there is no double
counting: A∪A 6= A. If there are no parentheses, the intersection takes precedence over the
union.

Example 3. — Simplify: (A∪C)(B∪C)

Solution:
(A∪C)(B∪C) = AB∪AC ∪BC ∪CC

= AB∪AC ∪BC ∪C
= AB∪AC ∪C
= AB∪C

�

De Morgan’s Laws

(A1∪·· ·∪An)c = A1
c∩·· ·∩Anc

(A1∩·· ·∩An)c = A1
c∪·· ·∪Anc

Proof.

ω ∈ (A1∪·· ·∪An)c

⇐⇒ ω /∈ A1∪·· ·∪An
⇐⇒ ω /∈ A1 and ω /∈ A2 and . . . and ω /∈ An
⇐⇒ ω ∈ A1

c and ω ∈ A2
c and . . . and ω ∈ Anc

⇐⇒ ω ∈ A1
c∩·· ·∩Anc

Similarly,
ω ∈ (A1∩·· ·∩An)c

⇐⇒ ω /∈ A1∩·· ·∩An
⇐⇒ ω /∈ A1 or . . . or ω /∈ An
⇐⇒ ω ∈ A1

c or . . . or ω ∈ Anc
⇐⇒ ω ∈ A1

c∪·· ·∪Anc

�
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For 2 events:

Not (A and B) is the same as Not A or Not B.
Not (A or B) is the same as Not A and Not B.

Example 4. — A chain Consider a simple chain consisting of two links. The chain will fail to
carry a given load if either link breaks. Let:
A = the breakage of link 1
B = the breakage of link 2
Then,

the chain fails = A∪B

No failure of the chain, therefore, is the complement (A∪B)c. However, no failure of the chain
also means that both links survive (no breakage); that is,

the chain does not fail = Ac∩Bc

which is a demonstration of the validity of De Morgan’s rule.

Example 5. — Water supply system The water supply for two cities C and D comes from the
two sources A and B as shown in the figure. Water is transported by pipelines consisting of
branches 1, 2, 3, and 4. Assume that either one of the two sources, by itself, is sufficient to
supply the water for both cities.

Denote: Ei = failure of branch i = 1,2,3,4. Failure of a pipe branch means there is serious
leakage or rupture of the branch. Using these events, express the events

a) water shortage in city C
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b) no water shortage in city C (simplify using De Morgan)
c) water shortage in city D
d) no water shortage in city D

Solution: We have:
a) water shortage in city C: E1E2∪E3
b) no water shortage in city C: (E1E2∪E3)c = (E1E2)cE3

c = (E1
c∪E2

c)E3
c

c) water shortage in city D: E1E2∪E3∪E4
d) no water shortage in city D: (E1E2∪E3∪E4)c = (E1

c∪E2
c)E3

cE4
c

�

1.3 Combinatorics: counting strategies when outcomes are equally likely
Motivation for combinatorics:
Fact 1.7 — Probability when outcomes are equally likely. If all outcomes of an experiment are
equally likely, the probability of an event A happening is:

P(A) = number of outcomes favorable to A
number of outcomes = |A||S|

where |A| is the size of set A.

→ Combinatorics helps calculate |A| and |S|.

Example 6. At Coco’s restaurant you have
a) two choices for appetizers: soup or juice;
b) three for the main course: a meat, fish, or vegetable dish; and
c) two for dessert: ice cream or cake.

How many possible choices do you have for your complete meal?

Solution: We illustrate the possible meals by a tree diagram, where we see that the total number of
choices is the product of the number of choices at each stage. In this examples we have 2 ·3 ·2 = 12
possible menus. �
Our menu example illustrates the following general counting technique.

Basic Rule in combinatorics In an experiment with k steps, if
• the 1st step has n1 possible outcomes,
• the 2nd step has n2 possible outcomes,
• . . .
• the kth step has nk possible outcomes, then there are:

n1×n2×·· ·×nk (1.2)

possible outcomes for the whole experiment.

Example 7. A finite set Ω has n elements. Show that if we count the empty set and Ω as subsets,
there are 2n subsets of Ω.
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Solution: The experiment of generating a subset of Ω can be broken down in n steps, one for each
element in Ω, and for each element we have 2 choices: we either pick or do not pick the element. �

Example 8. — Permutations. The English alphabet has 26 letters. How many 5-letter “words”
are there if:

a) repeated letters are allowed (experiment with replacement)
b) repeated letters are not allowed (without replacement)

Solution:
a) repeated letters are allowed: 26×26×26×26×26 = 265

b) repeated letters are not allowed: 26×25×24×23×22
�

Example 9. In example 8, how many 5-letter “words” contain NO letter “S”, if:
a) repeated letters are allowed (with replacement)
b) repeated letters are not allowed (without replacement)

Solution:
a) repeated letters are allowed: 255

b) repeated letters are not allowed: 25×24×23×22×21
�

Example 10. In example 8, how many 5-letter “words” contain at least 1 letter “S”, if:
a) repeated letters are allowed (with replacement)
b) repeated letters are not allowed (without replacement)

Solution:
a) repeated letters are allowed: 265−255

b) repeated letters are not allowed: 26×25×24×23×22−25×24×23×22×21
�

Example 11. In example 8, how many 5-letter “words” contain exactly one letter “S”, if:
a) repeated letters are allowed (with replacement)
b) repeated letters are not allowed (without replacement)

Solution:
a) repeated letters are allowed: 5×254

(first step: place letter S in any of the five spots, second step: fill any of the four spots
available with any of the 25 remaining letters,...)

b) repeated letters are not allowed: 5×25×24×23×22
�

Example 12. In example 8, how many 5-letter “words” contain exactly 1 letter “S” and 1 letter
“O”, if:

a) repeated letters are allowed (with replacement)
b) repeated letters are not allowed (without replacement)

Solution:
a) repeated letters are allowed: 5×4×243

(first step: place letter S in any of the five spots, second step: place letter O in any of the four
remaining spots, third step: fill any of the 3 remaining spots with any of the 24 remaining
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letters,...)
b) repeated letters are not allowed: 5×4×24×23×22

�
Ordered sequence (word) is a list of elements where the order matters, e.g. {1,2,3,2} 6=
{1,2,2,3}.

Permutations: The number of distinct ordered sequences with k elements that can be chosen
from a set with n elements.

Fact 1.9 The number of permutations with replacement of k objects out of n is

nk

and gives the number of ordered sequences possible when selecting k objects out of n with
replacement.

Fact 1.10 The number of permutations without replacement of k objects out of n,

nPk = n(n−1)(n−2) . . .(n−k+ 1) = n!
(n−k)!

gives the number of ordered sequences possible when selecting k objects out of n without replace-
ment.

We can alter this formula to disregard ordering by eliminating each ordering of each set of objects.
Since we are choosing k objects from a set of n objects, those k objects can be ordered in k! ways.
So, if we simply divide nPk by k!, we then have the number of ways we can select k objects from n
without replacement and without regard for order. This is called the number of combinations of n
taken k at a time:
Example 13. — Combinations. How many groups of 3 students can be made in a class of 4
students?

Solution: There are 4P3 ordered sequences of 3 students:

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3
3 4 2 4 2 3 3 4 1 4 1 3 2 4 1 4 1 2 2 3 1 3 1 2

Since 3 students can be shuffled in 3! = 6 different ways, the answer is 4P3/3!. �

An unordered sequence (group) is a list of elements where the order DOES NOT matters, e.g.
the group {1,2,3,4} is equivalent to {1,4,2,3}.

Combinations: The number of distinct unordered sequences with k elements that can be
chosen, without replacement, from a set with n elements is denoted by

(
n
k

)
, and is pronounced

“n choose k." The number
(
n
j

)
is called a binomial coefficient.
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Fact 1.11 The number of combinations without replacement of k objects out of n,(
n

k

)
= nPk/k! = n!

(n−k)!k!

gives the number of unordered sequences possible when selecting k objects out of n without
replacement.
Note:

(
n
k

)
=
(

n
n−k

)
The sampling table gives the number of possible samples (sequences) of size k out of a population
of size n, depending on how the sample is collected.

Permutations Combinations

(order matters) (not matter)

With Replacement nk
(
n+k−1

k

)
Without Replacement nPk = n!

(n−k)!
(
n
k

)
→ More info on combinations with replacement...

Example 14. — Georgia lottery Powerball Pick 6 different numbers:
• 5 between 1-69 and
• 1 PowerBall number between 1-26.

what are the chances of winning?

Solution: |S|=
(69

5
)(26

1
)

= 292,201,338 → P(winning)=1/292,201,338. �

Example 15. * There are n students in a classroom. Assuming 365 days in a year, what is the
probability that everyone has distinct birthdays , ignoring the year?

Solution: There are 365 options for each person’s birthday. The sample space is all possible
birthday sequences of length n. Therefore,

|S|= 365n

Let A be the event that everyone has distinct birthdays.
If n > 365, at least two persons must share a birthday.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

n

P
(A

)

If n≤ 365,

|A|= 365×364 . . .(365−n+ 1) = 365Pn

Therefore,

P(A) =
365Pn
365n

=
365!

(365−n)!
365n

http://www.mathsisfun.com/combinatorics/combinations-permutations.html
https://www.galottery.com/en-us/games/draw-games/powerball.html
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NOTE: the probability of at least two persons sharing a
birthday is Ac, and

|Ac|= |S|− |A|, and therefore:

P(Ac) = |S|− |A||S| = 1−P(A) (1.3)

�
Important note on identical objects: Consider n objects of which k are identical of type A

and the remaining (n−k) of type B. The number of ways one can arrange these n objects is(
n
k

)
= n!

(n−k)!k! .

Why? label each of the n objects with a unique number so that all objects are different. These
n objects can be arranged in n! different ways. If we remove the labels, we would see that each
particular arrangement is repeated k!(n−k)! times (recall that k distinct objects can be ordered in
k! ways).
For example, the number of arrangements of 3 A’s and 2 B’s after labeling is 5!=120:
{A1, A2, A3, B1, B2} {A1, A2, A3, B2, B1} {A1, A2, B1, A3, B2} {A1, A2, B1, B2, A3} {A1, A2, B2, A3, B1}
{A1, A2, B2, B1, A3} {A1, A3, A2, B1, B2} {A1, A3, A2, B2, B1} {A1, A3, B1, A2, B2} {A1, A3, B1, B2, A2}
{A1, A3, B2, A2, B1} {A1, A3, B2, B1, A2} {A1, B1, A2, A3, B2} {A1, B1, A2, B2, A3} {A1, B1, A3, A2, B2}
{A1, B1, A3, B2, A2} {A1, B1, B2, A2, A3} {A1, B1, B2, A3, A2} {A1, B2, A2, A3, B1} {A1, B2, A2, B1, A3}
{A1, B2, A3, A2, B1} {A1, B2, A3, B1, A2} {A1, B2, B1, A2, A3} {A1, B2, B1, A3, A2} {A2, A1, A3, B1, B2}
{A2, A1, A3, B2, B1} {A2, A1, B1, A3, B2} {A2, A1, B1, B2, A3} {A2, A1, B2, A3, B1} {A2, A1, B2, B1, A3}
{A2, A3, A1, B1, B2} {A2, A3, A1, B2, B1} {A2, A3, B1, A1, B2} {A2, A3, B1, B2, A1} {A2, A3, B2, A1, B1}
{A2, A3, B2, B1, A1} {A2, B1, A1, A3, B2} {A2, B1, A1, B2, A3} {A2, B1, A3, A1, B2} {A2, B1, A3, B2, A1}
{A2, B1, B2, A1, A3} {A2, B1, B2, A3, A1} {A2, B2, A1, A3, B1} {A2, B2, A1, B1, A3} {A2, B2, A3, A1, B1}
{A2, B2, A3, B1, A1} {A2, B2, B1, A1, A3} {A2, B2, B1, A3, A1} {A3, A1, A2, B1, B2} {A3, A1, A2, B2, B1}
{A3, A1, B1, A2, B2} {A3, A1, B1, B2, A2} {A3, A1, B2, A2, B1} {A3, A1, B2, B1, A2} {A3, A2, A1, B1, B2}
{A3, A2, A1, B2, B1} {A3, A2, B1, A1, B2} {A3, A2, B1, B2, A1} {A3, A2, B2, A1, B1} {A3, A2, B2, B1, A1}
{A3, B1, A1, A2, B2} {A3, B1, A1, B2, A2} {A3, B1, A2, A1, B2} {A3, B1, A2, B2, A1} {A3, B1, B2, A1, A2}
{A3, B1, B2, A2, A1} {A3, B2, A1, A2, B1} {A3, B2, A1, B1, A2} {A3, B2, A2, A1, B1} {A3, B2, A2, B1, A1}
{A3, B2, B1, A1, A2} {A3, B2, B1, A2, A1} {B1, A1, A2, A3, B2} {B1, A1, A2, B2, A3} {B1, A1, A3, A2, B2}
{B1, A1, A3, B2, A2} {B1, A1, B2, A2, A3} {B1, A1, B2, A3, A2} {B1, A2, A1, A3, B2} {B1, A2, A1, B2, A3}
{B1, A2, A3, A1, B2} {B1, A2, A3, B2, A1} {B1, A2, B2, A1, A3} {B1, A2, B2, A3, A1} {B1, A3, A1, A2, B2}
{B1, A3, A1, B2, A2} {B1, A3, A2, A1, B2} {B1, A3, A2, B2, A1} {B1, A3, B2, A1, A2} {B1, A3, B2, A2, A1}
{B1, B2, A1, A2, A3} {B1, B2, A1, A3, A2} {B1, B2, A2, A1, A3} {B1, B2, A2, A3, A1} {B1, B2, A3, A1, A2}
{B1, B2, A3, A2, A1} {B2, A1, A2, A3, B1} {B2, A1, A2, B1, A3} {B2, A1, A3, A2, B1} {B2, A1, A3, B1, A2}
{B2, A1, B1, A2, A3} {B2, A1, B1, A3, A2} {B2, A2, A1, A3, B1} {B2, A2, A1, B1, A3} {B2, A2, A3, A1, B1}
{B2, A2, A3, B1, A1} {B2, A2, B1, A1, A3} {B2, A2, B1, A3, A1} {B2, A3, A1, A2, B1} {B2, A3, A1, B1, A2}
{B2, A3, A2, A1, B1} {B2, A3, A2, B1, A1} {B2, A3, B1, A1, A2} {B2, A3, B1, A2, A1} {B2, B1, A1, A2, A3}
{B2, B1, A1, A3, A2} {B2, B1, A2, A1, A3} {B2, B1, A2, A3, A1} {B2, B1, A3, A1, A2} {B2, B1, A3, A2, A1}

If we remove the labels, we see that each pattern is repeated 3!2!=12 times:
{A, A, A, B, B}∗ {A, A, A, B, B}∗ {A, A, B, A, B} {A, A, B, B, A} {A, A, B, A, B}
{A, A, B, B, A} {A, A, A, B, B}∗ {A, A, A, B, B}∗ {A, A, B, A, B} {A, A, B, B, A}
{A, A, B, A, B} {A, A, B, B, A} {A, B, A, A, B} {A, B, A, B, A} {A, B, A, A, B}
{A, B, A, B, A} {A, B, B, A, A} {A, B, B, A, A} {A, B, A, A, B} {A, B, A, B, A}
{A, B, A, A, B} {A, B, A, B, A} {A, B, B, A, A} {A, B, B, A, A} {A, A, A, B, B}∗
{A, A, A, B, B}∗ {A, A, B, A, B} {A, A, B, B, A} {A, A, B, A, B} {A, A, B, B, A}
{A, A, A, B, B}∗ {A, A, A, B, B}∗ {A, A, B, A, B} {A, A, B, B, A} {A, A, B, A, B}
{A, A, B, B, A} {A, B, A, A, B} {A, B, A, B, A} {A, B, A, A, B} {A, B, A, B, A}
{A, B, B, A, A} {A, B, B, A, A} {A, B, A, A, B} {A, B, A, B, A} {A, B, A, A, B}
{A, B, A, B, A} {A, B, B, A, A} {A, B, B, A, A} {A, A, A, B, B}∗ {A, A, A, B, B}∗
{A, A, B, A, B} {A, A, B, B, A} {A, A, B, A, B} {A, A, B, B, A} {A, A, A, B, B}∗
{A, A, A, B, B}∗ {A, A, B, A, B} {A, A, B, B, A} {A, A, B, A, B} {A, A, B, B, A}
{A, B, A, A, B} {A, B, A, B, A} {A, B, A, A, B} {A, B, A, B, A} {A, B, B, A, A}
{A, B, B, A, A} {A, B, A, A, B} {A, B, A, B, A} {A, B, A, A, B} {A, B, A, B, A}
{A, B, B, A, A} {A, B, B, A, A} {B, A, A, A, B} {B, A, A, B, A} {B, A, A, A, B}
{B, A, A, B, A} {B, A, B, A, A} {B, A, B, A, A} {B, A, A, A, B} {B, A, A, B, A}
{B, A, A, A, B} {B, A, A, B, A} {B, A, B, A, A} {B, A, B, A, A} {B, A, A, A, B}
{B, A, A, B, A} {B, A, A, A, B} {B, A, A, B, A} {B, A, B, A, A} {B, A, B, A, A}
{B, B, A, A, A} {B, B, A, A, A} {B, B, A, A, A} {B, B, A, A, A} {B, B, A, A, A}
{B, B, A, A, A} {B, A, A, A, B} {B, A, A, B, A} {B, A, A, A, B} {B, A, A, B, A}
{B, A, B, A, A} {B, A, B, A, A} {B, A, A, A, B} {B, A, A, B, A} {B, A, A, A, B}
{B, A, A, B, A} {B, A, B, A, A} {B, A, B, A, A} {B, A, A, A, B} {B, A, A, B, A}
{B, A, A, A, B} {B, A, A, B, A} {B, A, B, A, A} {B, A, B, A, A} {B, B, A, A, A}
{B, B, A, A, A} {B, B, A, A, A} {B, B, A, A, A} {B, B, A, A, A} {B, B, A, A, A}

So there are only
(
n
k

)
=
(5

3
)
=5!/(3!2!)=10 different patterns:
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{A, A, A, B, B} {A, A, B, A, B} {A, A, B, B, A} {A, B, A, A, B} {A, B, A, B, A}
{A, B, B, A, A} {B, A, A, A, B} {B, A, A, B, A} {B, A, B, A, A} {B, B, A, A, A}

In general:
Several groups of identical objects: Consider ni identical objects of type i = 1,2, . . .m. The

number of ways one can arrange these n=∑m
i=1ni objects is

n!
n1!n2! . . .nm!

Example 16. A Bernoulli trial is an experiment that can result in either a success or a failure. In
how many ways can the results of n Bernoulli trials be arranged such that there are k successes?

Solution:
(
n
k

)
�

Example 17. The Georgia Tech football team played 8 games in a season, winning 3, losing 3,
and ending 2 in a tie. In how many ways could this have happened?

Solution: 8!
3!3!2! �

Example 18. — Books on a shelf In how many ways can we arrange 3 books on a shelf with
capacity for 4 books?

Solution: |A|=
(4

3
)

= 4 �

Example 19. A nickel is tossed 4 times. What is the probability of obtaining 3 heads?

Solution: |S|=24=16
The number of outcomes that yield 3H is identical to the number of ways we can arrange 3 books
on a shelf with capacity for 4 books, so:
|A|=

(4
3
)

= 4 and P(A) = 4/16. �

Example 20. A nickel is tossed 4 times. What is the probability of obtaining 3 heads if the coin
is biased with a probability of heads of 0.53?

Solution: Since the coin is biased outcomes are not equally likely and therefore combinatorics
techniques cannot be applied. Later we will see that this is given by the binomial distribution. �

Example 21. 8 books are to be arranged on 2 shelves, of capacities 3 and 5 respectively. Out of
the 8 books, 2 books are special. Find the probability that the two special books end up on the
same shelf.

Solution: [1] If the special books are to be placed on the longer shelf, the possible combinations
are

(5
2
)
.

If the special books are to be placed on the shorter shelf, the possible combinations are
(3

2
)
.

To total possible arrangements are
(8

2
)
.

Therefore, the required probability is (5
2)+(3

2)
(8

2)
= 13/28. �

Solution: [2] Let the special books be placed first.
If the first special book is placed on the longer shelf, then it has 5 available positions, and the
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second special book has 4 available positions.
If the first special book is placed on the shorter shelf, then it has 3 available positions, and the
second special book has 2 available positions.
In either case, the number of ways of arranging the remaining 6 books in the remaining positions is
6!.
Therefore, the total number of arrangements satisfying the conditions is (5 ·4 ·6!+3 ·2 ·6!). The
total number of arrangements is 8!. Therefore, the required probability is 5·4·6!+3·2·6!

8! = 13/28. �

Example 22. — * The state of GA has license plates showing three numbers and four letters.
How many different license plates are possible

a) if the numbers must come after the letters?
b) if there is no restriction on where the letters and numbers appear?
c) as in part b) but replacing all numbers by an “A” and all letters by “B”?
d) BONUS: as in part b) but replacing all numbers < 5 by an “A”, all numbers ≥ 5 by “B”

and all letters by “C”?

Solution:
a) 103×264

b) There are
(7

3
)
possible arrangements of letters and numbers, each having the same number of

outcomes as in part a), so the answer is
(7

3
)
×103×264.

c)
(7

3
)

d) ∑3
nA=0

7!
nA!(3−nA)!4!

�

Example 23. Letters and mailboxes.]
a) How many ways can six indistinguishable letters be put in three mail boxes?
b) Using part a) above, show that r indistinguishable objects can be put in n boxes in(

n+ r−1
n−1

)
=
(
n+ r−1

r

)

different ways.

Solution:
a) One representation of this is given by the sequence |LL|L|LLL| where the |’s represent the

partitions for the boxes and the L’s the letters. Any possible way can be so described. Note
that we need two bars at the ends and the remaining two bars and the six L’s can be put
in any order. In this way, the problem boils down to shuffling six identical objects and two
identical objects, therefore the answer is

(8
2
)
or
(8

6
)
. Both give the same answer

b) same logic as above using r letters n mailboxes.
�

1.3.1 More problems in combinatorics (optional)
Example 24. Three balls are to be randomly selected, without replacement, from an urn containing
20 balls numbered 1 to 20. If Alice bets that at least one of the balls drawn has a number as
large as or larger than 17, what is the probability that Alice wins the bet?
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Solution: Let X be the largest number selected.
Therefore, X is a random variable which has a value from {3, . . . ,20}.
Let the value of the highest valued ball be i. Therefore, the number of ways to select the remaining
two balls is

(
i−1

2
)
.

Therefore, the probability of the value of the highest valued ball being i is

P(X = i) =

(
i−1

2
)

(20
3
)

Therefore,

P(X ≥ 17) = P(X = 17) + P(X = 18) + P(X = 19) + P(X = 20)

=

(16
2
)

+
(17

2
)

+
(18

2
)

+
(19

2
)

(20
3
)

�

Example 25. A president, a treasurer, and a secretary, all different, are to be chosen from a club
consisting of 10 people. How many different choices of office bearers are possible if

1. There are no restrictions.
2. Alice and Bob cannot serve together.
3. Charlie and David can serve together or not at all.
4. Eve must be an officer.
5. Frank can serve only if he is the president.

Solution:
1. The possible choices are 10P3.
2. If neither Alice nor Bob are office bearers, there are 8P3 possible choices.

If one of Alice and Bob is an office bearer, there are three possible posts for the selected person.
The number of choices for the rest of the posts are 8P2. Same for Bob. Therefore, the total
number of choices are 8P3 + 2 ·3 · 8P2.

3. If both Charlie and David are chosen, the number of choices is 3 ·2 · 8P1. If neither Charlie nor
David are chosen, the number of choices is 8P3. Therefore, the total number of choices are
3 ·2 ·

(8
1
)

+ 8P3.
4. There are three possible posts for Eve. Therefore, the total number of choices are 3 · 9P2.
5. If Frank is the president, the number of choices is 9P2. If Frank is not the president, the number

of choices is 9P3. Therefore, the total number of choices is 9P2 + 9P3.
�

Example 26. a different balls are divided randomly into n different cells. Find the probability
that all cells are non-empty when

a) a= n
b) a= n+ 1

Solution: We have:
a)

|S|= na

= nn
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If all cells are to be non-empty, the number of combinations is |A| = n!. Therefore, the
probability is n!

nn .
b)

|S|= na

= nn+1

The number of combinations to select 2 balls is
(
n+1

2
)
. Let these two balls be glued together

and be treated as one.
The number of arrangements of these n balls are n!.
Therefore, the total number of combinations are

(
n+1

2
)
n!.

Therefore, the probability is (n+1
2 )
n! .

�

Example 27. — Poker: why a four of a kind beats a full house? A poker hand is a random subset
of 5 elements from a deck of 52 cards.

a) How many hands have four of a kind?
b) How many hands have a full house?

Solution:
a) How many hands have four of a kind? There are 13 ways that we can specify the value

for the four cards. For each of these, there are 48 possibilities for the fifth card. Thus, the
number of four-of-a-kind hands is 13 ·48 = 624. Since the total number of possible hands is(52

5
)

= 2598960, the probability of a hand with four of a kind is 624/2598960 = .00024.
b) Full house: There are 13 choices for the value which occurs three times; for each of these

there are
(4

3
)

= 4 choices for the particular three cards of this value that are in the hand.
Having picked these three cards, there are 12 possibilities for the value which occurs twice;
for each of these there are

(4
2
)

= 6 possibilities for the particular pair of this value. Thus, the
number of full houses is 13 ·4 ·12 ·6 = 3744, and the probability of obtaining a hand with a
full house is 3744/2598960 = .0014.

Thus, while both types of hands are unlikely, you are six times more likely to obtain a full house
than four of a kind. �

Example 28. 5 cards are taken out randomly from a 52 card deck. Consider the following events.
a) A: All cards are higher than 10.
b) B: All cards are hearts.
c) C: All cards have different numbers.
d) D: All cards are consecutive numbers.

Assuming ace to have value 1, find the probabilities of A, B, C, and D.

Solution:

|S|=
(

52
5

)

a) There are 12 cards with numbers higher than 10. Therefore,

|A|=
(

12
5

)
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Therefore,

P(A) = |A||S| =

(12
5
)

(52
5
)

b) There are 13 heart cards. Therefore,

|B|=
(

13
5

)

Therefore,

P(B) = |B||S| =

(13
5
)

(52
5
)

c) There are 52×48×44×40×36 ways to have all cards with different numbers, but since order
dos not matter:

|C|= 52×48×44×40×36/5! = 1,317,888

Alternatively, the number of ways of selecting 5 different numbers out of 13 is
(13

5
)
. For each of the

selected number, there are 4 cards, of which exactly one has to be selected. Therefore,

|C|=
(

13
5

)
45 = 1,317,888

Therefore,

P(C) = 1,317,888(52
5
)

d) There are 9 sequences of consecutive numbers. Each of the numbers have 4 corresponding cards
each. Therefore,

|D|= 9 ·45

Therefore,

P(D) = 9 ·45(52
3
)

�

Example 29. A dice is tossed 3 times. Consider the following events.
a) A: The sum of all three numbers is even.

Find the probability of A.
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Solution: Every time the dice is rolled, there as 6 possible outcomes. Therefore,

|S|= 63

a) For the sum of three numbers to be even, exactly 0 or 2 of them must be odd.
There is

(3
3
)

= 1 combination for all three numbers to be even. Each of these even numbers has 3
options. Therefore, the total number of combinations following the restriction in 1×33.
There are

(3
2
)

= 3 combinations for exactly 2 numbers to be odd. Each of the odd numbers has 3
option, and the even number has 3 options. Therefore, the total number of combinations following
the restriction in 3×33.
Therefore, |A|= 33 + 34 and P(A) = 33+34

63 . �

1.4 Axioms of Probability
Probability: The probability of an event E, denoted by P(E), is a function that satisfies the

three basic axioms:in urban
Axiom 1:

0≤ P(E)≤ 1

Axiom 2:

P(S) = 1

Axiom 3: For any sequence of mutually exclusive events A1, A2 . . . ,

P
 ∞⋃
i=1

Ai

=
∞∑
i=1

P(Ai)

Fact 1.12

P(∅) = 0

Fact 1.13 For a finite collection of mutually exclusive event A1, . . . , An,

P
 n⋃
i=1

Ai

=
n∑
i=1

P(Ai)

Probability of the complement

P(Ac) = 1−P(A)

Proof.

A∩Ac = ∅
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Therefore, A and Ac are mutually exclusive. Therefore,

P(A) + P(Ac) = P(A∪Ac)
= P(S)
= 1

∴ P(Ac) = 1−P(A)

�

Example 30. — Three traffic signals A lady crosses three traffic signals, with red and green lights
only, on the way to her dog’s hairdresser. The probabilities of encountering 0, 1, and 2 red lights
are 0.4, 0.1, 0.2 respectively.
Find the probabilities of

a) Encountering at least one red light.
b) Encountering at least one green light.
c) Encountering an odd number of red lights.

Solution:
a) Encountering at least one red light.

P(1 red) + P(2 red) + P(3 red) = 1−P(0 red)
= 1−0.4
= 0.6

b) Encountering at least one green light.

P(1 green) + P(2 green) + P(3 green) = P(0 red) + P(1 red) + P(2 red)
= 0.4 + 0.1 + 0.2
= 0.7

c) Encountering an odd number of red lights.

P(1 red) + P(3 red) = 1−P(0 red)−P(2 red)
= 1−0.4−0.2
= 0.4

�

1.5 Addition rule
Suppose that you have two finite sets A and B. We can find the size of their union using

|A∪B|= |A|+ |B|− |A∩B|

because when you work out |A|+ |B| the elements of A∩B are being ‘counted twice’. You
compensate for this by subtracting |A∩B|.
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Fact 1.15 — Addition rule (aka inclusion-exclusion formula).

P(A∪B) = P(A) + P(B)−P(A∩B)

Example 31. Let A be the event “even number” and B the event “number> 3” when a fair dice
is thrown. P(A∪B)?

Solution: P(A) = P(B) = 3
6 and P(A∩B) = 2

6 . Hence P(A∪B) = 3
6 + 3

6− 2
6 = 4

6 , i.e. P({2,4,5,6}) =
2
3 . �

Example 32. Ben is going to celebrate the beginning of the year of the dragon. He lives close
to two pubs. The probability that he would go to pub A is 0.5 and the probability that the
would go to pub B is 0.4. In addition, the probability that he would go to at least one of the
two venues is 0.8.

1. What is the sample space (in terms of A and B)?
2. What is the probability that he would go to both pubs?
3. What is the probability that he would go to exactly one pub?

Solution:
1. Let A be the event that he would go to pub A, and let B be the event that he goes to pub B.

Therefore,

S =
{
A∩Bc,Ac∩B,A∩B,Ac∩Bc

}
2. The probability that he would go to both pubs is

P(A∩B) = P(A) + P(B)−P(A∪B)
= 0.5 + 0.4−0.8
= 0.1

3. The probability that he would go to exactly one pub is

P(A∪B)−P(A∩B) = 0.8−0.1
= 0.7

�

Example 33. — A fair coin is flipped 3 times . What is the probability of obtaining heads on the
first flip OR the third flip?

Solution: the sample space is given by

H H H
H H T
H T H
H T T
T H H
T H T
T T H
T T T
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Let H1 and H3 denote the events that the first flip results in heads and the third flip results in
heads, respectively. By the inclusion-exclusion formula, we have

P(H1∪H3] = P(H1] + P(H3]−P(H1∩H3]

= 1
2 + 1

2 −
1
4

= 3
4

�

Fact 1.16 — Addition rule for 3 events.

P(A∪B∪C) = P(A) + P(B) + P(C)− (P(A∩B) + P(A∩C) + P(B∩C)
)
+

+ P(A∩B∩C)

A

B

C

Fact 1.17 — Addition rule for n events.

P
 n⋃
i=1

Ai

=
n∑
i=1

P(Ai)−
∑

P(all 2-event intersections)

+
∑

P(all 3-event intersections)
−
∑

P(all 4-event intersections)
. . .

Fact 1.18 — Addition rule for n events using DeMorgan’s law.

P
 n⋃
i=1

Ai

= 1−P(
n⋂
i=1

Ai
c)

For example,

P(A∪B∪C) = 1−P(Ac∩Bc∩Cc)

Example 34. — The weatherman said that:

P(rain Mon) = 30%, P(rain Tue) = 40%, P(rain Wed) = 50%.
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From experience, we know that

P(rain 2 days in a row) = 20%, P(rain 3 days in a row) = 10%,

P(rain Mon, Wed) = 5%.
Show that there is an 85% percent chance of rain anytime from Monday to Wednesday.

Solution: Let A,B and C be the events that it rains Monday, Tuesday and Wednesday, respectively.
Then,

P(A∪B∪C) = P(A) + P(B) + P(C)− (P(A∩B) + P(A∩C) + P(B∩C)
)
+

+ P(A∩B∩C)
= .3 + .4 + .5− (.2 + .05 + .2) + .1 = .85

�

Example 35. — 3 dice are rolled. What is the probability that (at least) one of the dice results
in 4?

Solution:[1] Let Fi, i ∈ {1,2,3} be the event that the ith dice results in a 4. We are interested in
P(F1∪F2∪F3]. By the inclusion-exclusion formula we have

P(F1∪F2∪F3) = P(F1)+P(F2)+P(F3)−P(F1∩F2)−P(F1∩F3)−P(F2∩F3)+P(F1∩F2∩F3)

Using combinatorics (→ see spreadsheet):

|Fi|= 62, i= 1,2,3
|Fi∩Fj |= 6, j 6= i= 1,2,3

|F1∩F2∩F3|= 1

and thus

|F1∪F2∪F3|= |F1|+ |F2|+ |F3|− |F1∩F2|− |F1∩F3|− |F2∩F3|+ |F1∩F2∩F3|
= 62 + 62 + 62−6−6−6 + 1 = 91

Since |S|= 63, the requested probability is 91/216.
�

Solution:[2, using De Morgan]

P(F1∪F2∪F3) = 1−P(F1
c∩F2

c∩F3
c)

Using combinatorics, |F1
c∩F2

c∩F3
c|= 53 because none of the three dice should land on 4. Therefore,

P(F1
c∩F2

c∩F3
c] = 53/63 and the requested probability is 1−53/63 = 91/216.

�

1.6 Conditional Probability
The conditional probability of an event A is the probability that the event will occur given the
knowledge that an event B has already occurred. This probability is written P(A|B), the probability
of B given A.

https://gtvault-my.sharepoint.com/:x:/g/personal/jlaval3_gatech_edu/EXpCv8B4W4VJkNyg7LJeOk0B1Yd4GmoU2g7f9Y8_N_xl6Q?e=PLRjny
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For example the probability of 7 when rolling two die is 1/6 (= 6/36) because the sample space
consists of 36 equi-probable elementary outcomes of which 6 are favorable to the event of getting 7
as the sum of two die. Denote this event A: P(A) = 1/6. Consider another event B which is having
at least one 2. There are still 36 elementary outcomes of which 11 are favorable to B; therefore,
P(B) = 11/36. Question is what happens to the probability of A under the assumption that B
took place?
The assumption that B took place reduces the set of possible outcomes to 11. Of these, only two
- 2+5 and 5+2 - are favorable to A. Since this is reasonable to assume that the 11 elementary
outcomes are equi-probable, the probability of A under the assumption that B took place equals
2/11. This probability is denoted P(A|B) - the probability of A assuming B: P(A|B) = 2/11.

For two events A and B in sample space S, where P(B)> 0, the conditional probability, i.e.
the probability that A will occur after B has already occurred is defined as

P(A|B) = P(A∩B)
P(B)

Key idea: we divide by P(B) to account for the new sample space, B.

Conditional Probabilities are just like the ordinary probabilities, only on a new sample space. Thus,
they satisfy all the formulas we already know, e.g.:

• P(A∪B|C) = P(A|C) + P(B|C)−P(A∩B|C)
• P(Ac|B) = 1−P(A|B)
• P(F1∪F2∪F3|C) = 1−P(F1

c∩F2
c∩F3

c|C)

Example 36. A dice is rolled once. Consider the following events.

A: The result is even.

B: The result is greater than 3.

What is the probability that the result is even, if it is known that result is greater than 3?

Solution:

P(A|B) = P(A∩B)
P(B)

= P
({2,4,6}∩{4,5,6})

P
({4,5,6})

= P
({4,6})

P
({4,5,6})

= 1/3
1/2

= 2
3

�
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Example 37. A coin is flipped twice. What is the probability of getting ‘Heads’ on both flips,
given that the first flip results in ‘Heads’.

Solution:

S =
{
(H,H),(H,T ),(T,H),(T,T )

}
Let A be the event of getting two ‘Heads’. Therefore,

A=
{
(H,H)

}
Let B be the event that the first flip results in ‘Heads’. Therefore,

B =
{
(H,T ),(H,H)

}
Therefore,

P(A|B) = P(A∩B)
P(B)

= 1/4
1/2

= 1
2

�

Example 38. A coin is flipped twice. What is the probability of ‘Heads’ on both flips, given that
at least one flip results in ‘Heads’.

Solution:

S =
{
(H,H),(H,T ),(T,H),(T,T )

}
Let A be the event of getting two ‘Heads’. Therefore,

A=
{
(H,H)

}
Let B be the event that at least one flip results in ‘Heads’. Therefore,

B =
{
(H,T ),(T,H),(H,H)

}
Therefore,

P(A|B) = P(A∩B)
P(B)

= 1/4
3/4

= 1
3

�
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Example 39. The probability that a new car battery functions for over 10,000 miles is 0.8, the
probability that it functions for over 20,000 miles is 0.4, and the probability that it functions
for over 30,000 miles is 0.1. If a new car battery is still working after 10,000 miles, what is the
probability that

a) its total life will exceed 20,000 miles,
b) its additional life will exceed 20,000 miles?

Consider the following events to answer the questions:

L10: event that the battery lasts for more than 10K miles.
L20: event that the battery lasts for more than 20K miles.
L30: event that the battery lasts for more than 30K miles.

Solution:
We know that P(L10) = 0.8, P(L20) = 0.4 and P(L30) = 0.1. We are interested in calculating
P(L20|L10) and P(L30|L10).

P(L20|L10) = P(L20∩L10)
P(L10)

= P(L20)
P(L10)

= 0.4
0.8

= 1
2

By doing similar calculations it is easy to verify that P(L30|L10) = 1
8 . �

Fact 1.19 — Multiplication Rule. For two events:

P(A1∩A2) = P(A2)P(A1|A2)
= P(A1)P(A2|A1)

For 3 events there are 3! possibilities:

P(A1∩A2∩A3) = P(A1)P(A2|A1)P(A3|A1∩A2)
= P(A2)P(A3|A2)P(A1|A2∩A3)
= . . .

For 4 events we have 4! alternative formulas:

P(A1∩A2∩A3∩A4) = P(A1)P(A2|A1)P(A3|A1∩A2)P(A4|A1∩A2∩A3)
= P(A4)P(A2|A4)P(A3|A4∩A2)P(A1|A4∩A2∩A3)
= . . .
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Example 40. An urn initially contains 5 white balls and 7 black balls. Each time a ball is selected,
its color is noted and it is replaced in the urn along with two other balls of the same
color. Compute the probability that the first two balls selected are black and the next two
white.
Consider the following events to answer the question:

B1: event that the first ball chosen is black.
B2: event that the second ball chosen is black.
W3: event that the third ball chosen is white.
W4: event that the fourth ball chosen is white.

Solution: We are interested in calculating P(B1∩B2∩W3∩W4). Using the Multiplication rule
we get,

P(B1∩B2∩W3∩W4) = P(B1) ·P(B2|B1) ·P(W3|B1∩B2) ·P(W4|B1∩B2∩W3)

= 7
12 ×

9
14 ×

5
16 ×

7
18

= 35
768

�

Example 41. A deck of cards is randomly divided into four stacks of 13 cards each. Find the
probability that each stack has exactly one ace. Hint:

Let A1 be the event that A♠ is in any one of the stacks.
Let A2 be the event that A♠, A♥ are in different stacks.
Let A3 be the event that A♠, A♥, A♦ are in different stacks.
Let A4 be the event that A♠, A♥, A♦, A♣ are in different stacks.

Solution: [using conditional probability.]
Therefore,

P(A1∩A2∩A3∩A4) = P(A1)P(A2|A1)P(A3|A1∩A2)P(A4|A1∩A2∩A3)

= 1 × 39
51 × 26

50 × 13
49 = 0.105

�
Solution: [using combinatorics.]

|S|=
(

52
13

)(
39
13

)(
26
13

)(
13
13

)

Let A be the event that each stack has exactly one ace. Therefore, each stack has one ace, and 12
non-ace cards. Therefore,

|A|=
(4

1

)(
48
12

)(3
1

)(
36
12

)(2
1

)(
24
12

)(1
1

)(
12
12

)
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Therefore,

P(A) = |A||S|

=

((4
1
)(48

12
))((3

1
)(36

12
))((2

1
)(24

12
))((1

1
)(12

12
))

(52
13
)(39

13
)(26

13
)(13

13
) = 0.105

�

Example 42. (Adopted from Meyer) A 52-card deck is thoroughly shuffled and you are dealt a
hand of 13 cards.

1. If you have (at least) one ace, what is the probability that you have a second ace?
2. If you have (at least) the ace of spades, what is the probability that you have a second ace?

Hint: Define the events:
A1: exactly one ace
A2: exactly two aces
A3: exactly three aces
A4: exactly four aces

Solution: Define the events:
A1: exactly one ace, A2: exactly two aces, A3: exactly three aces, A4: exactly four aces.

Note that these events are disjoint (= Mutually exclusive). Remember that if A and B are two
disjoint events, P(A∪B) = P(A) + P(B).

a) The problem is asking for the probability: P(A2∪A3∪A4|A1∪A2∪A3∪A4)

Compute the probabilities of each of the four events:

P(A1) = (4
1)(48

12)
(52

13)
= 0.438 P(A2) = (4

2)(48
11)

(52
13)

= 0.213 P(A3) = (4
3)(48

10)
(52

13)
= 0.0412 P(A4) = (4

4)(48
9 )

(52
13)

=
0.00264

From the definition of conditional probability:

P(A2∪A3∪A4|A1∪A2∪A3∪A4) = P((A2∪A3∪A4)∩ (A1∪A2∪A3∪A4))
P(A1∪A2∪A3∪A4)

= P(A2∪A3∪A4)
P(A1∪A2∪A3∪A4)

= P(A2) + P(A3) + P(A4)
P(A1) + P(A2) + P(A3) + P(A4)

≈ 0.257
0.7 = 0.37

b) Remarkably, the answer is different from part (a).
P(A1) = (1

1)(48
12)

(52
13)

= 0.109 P(A2) = (1
1)(3

1)(48
11)

(52
13)

= 0.106 P(A3) = (1
1)(3

2)(48
10)

(52
13)

= 0.0309 P(A4) =
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(1
1)(3

3)(48
9 )

(52
13)

= 0.00264

P(A2∪A3∪A4|A1∪A2∪A3∪A4)≈ 0.139
0.249 = 0.56

�

Example 43. What is the probability that when a deck of cards is dealt in a game of bridge
(each player gets 13 cards), the ♥s will be dealt such that Alice gets 3, Bob gets 4, Charlie gets
2, David gets 4.

Solution: Let EAlice be the event of Alice getting 3 ♥s.
Let EBob be the event of Bob getting 4 ♥s.
Let ECharlie be the event of Charlie getting 2 ♥s.
Let EDavid be the event of David getting 4 ♥s.
Therefore,

P(EAlice) =

(13
3
)(39

10
)

(52
13
)

P(EBob|EAlice) =

(10
4
)(29

9
)

(39
13
)

P(ECharlie|EAlice∩EBob) =

(6
2
)(20

11
)

(26
13
)

P(EDavid|EAlice∩EBob∩ECharlie) =

(4
4
)(9

9
)

(13
13
)

Therefore,

P(EAlice∩EBob∩ECharlie∩EDavid) = P(EAlice)
×P(EBob|EAlice)
×P(ECharlie|EAlice∩EBob)
×P(EDavid|EAlice∩EBob∩ECharlie)

=

(13
3
)(39

10
)

(52
13
)

(10
4
)(29

9
)

(39
13
)

(6
2
)(20

11
)

(26
13
)

(4
4
)(9

9
)

(13
13
)

�

1.7 Independent Events
Two events, A and B, are said to be independent if

P(A|B) = P(A)

→ Information about the occurrence of B does not affect the probability of A.
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Fact 1.20 — The multiplication rule with independent events.

P(A∩B) = P(A)P(B)

if and only if A and B are independent.

Fact 1.21 If A and B are independent, then so are Ac and B, A and Bc, Ac and Bc

Three events, A, B, and C, are said to be:

mutually independent if

P(A∩B∩C) = P(A)P(B)P(C)
and pairwise independent if

P(A∩B) = P(A)P(B)
P(B∩C) = P(B)P(C)
P(C ∩A) = P(C)P(A)

STOP! Pairwise independence does not imply mutual independence!

Example 44. two fair coins are tossed. Let
A: the first coin is H
B: the second coin is H
C: both coins match

a) are they pairwise independence?
b) are they mutually independent?

Solution:

S =
{
(H,H),(H,T ),(T,H),(T,T )

}
A=

{
(H,H),(H,T )

}
B =

{
(H,H),(T,H)

}
C =

{
(H,H),(T,T )

}
A∩B =

{
(H,H)

}
A∩C =

{
(H,H)

}
B∩C =

{
(H,H)

}
A∩B∩C =

{
(H,H)

}
a) they are pairwise independent because

P(A∩B) = P(A)P(B) = 1/4
P(B∩C) = P(B)P(C) = 1/4
P(C ∩A) = P(C)P(A) = 1/4

b) they are not mutually independent because

P(A∩B∩C) = 1/4 6= P(A)P(B)P(C) = (1/2)3

This makes sense: knowing that B and C occurred tells us that A also did. �
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Example 45. — 3 dice are rolled, what is the probability that one of the dice results in 4?

Solution:[1] Let Fi, i ∈ {1,2,3} be the event that the ith dice results in a 4. We are interested
in P(F1∪F2∪F3). By the inclusion-exclusion formula we have P(F1∪F2∪F3) = P(F1) + P(F2) +
P(F3)−P(F1 ∩F2)−P(F1∩F3)−P(F2 ∩F3) + P(F1 ∩F2 ∩F3) Since the events F1,F2,F3 are
mutually independent we can rewrite the above expression as

P(F∪F2∪F3) = P(F1) + P(F2) + P(F3)−P(F1)P(F2)−P(F1)P(F3)−P(F2)P(F3)
+P(F1)P(F2)P(F3)

= 1
6 + 1

6 + 1
6 −

(
1
6 ×

1
6

)
−
(

1
6 ×

1
6

)
−
(

1
6 ×

1
6

)
+
(

1
6 ×

1
6 ×

1
6

)

= 91
216

�
Solution:[2, using De Morgan]

P(F1∪F2∪F3) = 1−P(F1
c∩F2

c∩F3
c) = 1− (5/6)3 = 91

216
�

Example 46. A biased coin with p= probability of coming up H, is tossed n times. What is the
probability of having at least one H ?

Solution: Let A = having at least one H out of the n tosses. Instead of enumerating all possible
events containing at least one H and then compute the union of all those events, it is easier to
note that Ac = having all tosses come up T. Since P(T ) = 1−p and all the tosses are independent,
P(Ac) = (1−p)n and the desired probability is

P(A) = 1− (1−p)n (1.4)

STOP! Note that combinatorics is not useful here because the coin is biased, which
means that all outcomes in the relevant sample space are not equally likely.
If the coin were fair, i.e. p= 1/2, we could use combinatorics and get |S|= 2n, |Ac|= 1 and
P(Ac) = 1/2n, which matches the more general results above that P(Ac) = (1−p)n = (1−1/2)n.

�

Example 47. Suppose that A,B are mutually exclusive and P(A)> 0 and P(B)> 0. Are they
independent?

Solution: No! Since P(A∩B) = 0 for mutuality exclusive events, knowing that one occurred means
that the other cannot. Mathematically, they do not satisfy the condition for the independence

P(A∩B) = P(A)P(B)

in this case (where P(A)> 0 and P(B)> 0). �
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Example 48. Suppose that A⊂ B and P(A)> 0 and P(B)> 0. Are two events A and B inde-
pendent?

Solution: Since A⊂B,
P(A∩B) = P(A)

The condition for the independence is

P(A∩B) = P(A)P(B)

Hence, if P(B) = 1, A and B are independent but if P(B)< 1, A and B are not independent.
�

Example 49. If A and B are independent events, with P(A) = 1
3 and P(B) = 1

4 , find the following:
(a) P(Ac∩Bc)
(b) P(Ac|B).

Solution: a) Since A and B are independent, Ac and Bc are independent. So P(Ac ∩Bc) =
P(Ac)P(Bc) =

(
1−P(A)

)(
1−P(B)

)
= (1− 1

3)(1− 1
4) = 1

2 .

b) Since A and B are independent, Ac and B are also independent. So P(Ac|B) = P(Ac) =
1−P(A) = 2

3 .
�

Example 50. Two fair dice are rolled.
Let A be the event that the sum of the results of the dice is 6.
Let B be the event that the result of the first dice is 4.
Let C be the event that the sum of the results of the dice is 7.
Which of the possible pairs of the events are independent?

Solution:

P(A) = 5
36 P(B) = 1

6 P(C) = 6
36

P(A∩B) = 1
36 P(B∩C) = 1

36 P(A∩C) = 0

Therefore,

P(A∩B) 6= P(A)P(B)
P(B∩C) = P(B)P(C)
P(C ∩A) 6= P(C)P(A)

Therefore, only B and C are independent. Why? Think about the meaning of P(B|A) and P(B|C).
�

Example 51. Two cards are sequentially drawn (without replacement) from a well-shuffled deck
of 52 cards. Let A be the event that the two cards drawn have the same value (e.g. both 4s)
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and let B be the event that the first card drawn is an ace. Are these events independent?

Solution: To decide whether the two events are independent we need to check whether P(A∩B) =
P(A)P(B).

P(A) = 52×3
52×51 = 1

17
P(B) = 4×51

52×51 = 1
13

P(A∩B) = 4×3
52×51

= 1
17 ×

1
13

= P(A)P(B)
So yes, they are independent! This makes sense, all pairs have the same probability of being dealt.
�

1.8 Law of Total Probability
Fact 1.22 — Law of Total Probability . Given a division A1, . . . ,An of the sample space S, and
an event B in S,

P(B) =
n∑
i=1

P(B|Ai)P(Ai)

For example, for n= 3:

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2) + P(B|A3)P(A3).

For n= 2, we can say A1 = A and A2 = Ac, so:

P(B) = P(B|A)P(A) + P(B|Ac)P(Ac). (1.5)

A1∩B

B

A2

A1

A3

A4 A5

· · ·

An−1

An

B

A
B∩A B∩Ac

Ac

Example 52. * A chocolate factory has three production lines.
50% of the production is milk chocolate, out of which 1% is defective.
30% of the production is dark chocolate, out of which 2% is defective.
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20% of the production is white chocolate, out of which 0.5% is defective.
If a chocolate bar is picked randomly, what is the probability that it is defective?
Hint: Let A1, A2, A3 be the events that selected chocolate bar is made of milk, dark, white
chocolate, respectively. Let B be the event that the selected chocolate bar is defective.

Solution: Therefore,

P(B) =
3∑
i=1

P(Ai)P(B|Ai)

=
(
(0.5)(0.01)

)
+
(
(0.3)(0.02)

)
+
(
(0.2)(0.005)

)
= 0.005 + 0.006 + 0.001
= 0.012

�

Example 53. — Monty Hall Problem. You’re given the choice of three doors: Behind one door is
a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what’s
behind the doors, opens another door, say No. 2, which has a goat. He then says to you, "Do
you want to pick door No. 3?" Is it to your advantage to switch your choice?

Hint: use the total probability rule with the events:

W: win by switching doors
E: car behind original door (before Monty Hall opens door No. 2 above)

Solution: Let:
W: win by switching doors
E: car behind original door (before Monty Hall opens door No. 2 above)

P(W ) = P(W |E)P(E) + P(W |Ec)P(Ec)
= (0)(1/3) + (1)(2/3)
= 2/3

�

Example 54. — Tornadoes** A structure is located in a region where tornado wind force must
be considered in its design. Suppose that from the records of tornadoes for the past 200 years, it
is estimated that during any 5-year period the probability of having 0, 1 and 2 tornadoes is 0.5,
0.3 and 0.2, respectively. If a tornado occurs, the structure will be damaged with probability
p= 5%.

a) if two tornadoes occurred last year, what is the probability that there was damage to the
structure?



1.8 Law of Total Probability 43

b) what is the probability the a structure will be damaged in the next five years?
Hint: For part a) let

Ai be the events of having i= 0,1,2 tornadoes last year, and
D the event that a particular structure was damaged last year.

Solution:
a) If two tornadoes occurred last year, what is the probability that there was damage to the

structure? Let:

Ai = having i= 0,1,2 tornadoes last year, and

D = a structure was damaged last year.

For any particular structure, it is easier to calculate the probability of no damage given the
two tornadoes (= (1−p)2), so

P(D|A2) = 1−P(Dc|A2)
= 1− (1−p)2 = 0.0975

b) what is the probability that the structure will be damaged in the next five years? Let

Ai = having i= 0,1,2 tornadoes in the next five years, and

D = the structure will be damaged in the next five years.
Since we don’t know the number of tornadoes that will occur, we use the total probability
rule:

P(Dc) =
2∑
i=0

P(Dc|Ai)P(Ai)

=
2∑
i=0

(1−p)iP(Ai)

= (1−p)0P(A0) + (1−p)1P(A1) + (1−p)2P(A2)
=
(
(1)(0.5)

)
+
(
(0.95)(0.3)

)
+
(
(0.952)(0.2)

)
= 0.9655

and the answer is 1-0.9655=0.0345.
�

Example 55. A student in Monty Hall’s probability course misses his exam and must take a
makeup. Before the test, Prof. Hall invites him to choose one of five envelopes, two containing
easy makeup exams, three containing hard ones, and the student takes an envelope.
“Before you start, you might enjoy looking at one of my hard makeup exams – just full of nasty
probability problems,” says the professor. From among the four remaining envelopes, he selects
one at random that he knows to contain a hard exam and opens it.
“Excuse me,” says the student, “but the envelope I picked looks a bit smudged. Could I swap it
for one of the others?” And he does.
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What is the probability that the student has an easy exam after making the swap?

Solution: Let:
Event W: easy exam after swap
Event E: first choice is an easy exam
Event H: first choice is a hard exam
P(W ) = P(W |E)P(E) + P(W |H)P(H) = (1/3)(2/5) + (2/3)(3/5) = 8/15

�

Example 56. A box contains w white balls, b black balls and r red balls. A ball is chosen at
random and if it is either black or red then it is replaced by a white ball and if it is white then
it is replaced by a red ball. Now again draw a ball.

a) What is the probability that the second ball drawn is red when the first ball drawn is red ?
b) What is the probability that the second ball drawn is white?

Solution: Let Wi,Bi,Ri be the event that the i−th draw is a white, black and red ball respectively.
a)

P(R2|R1) = r−1
w+ b+ r

.

b)

P(W2) = P(W2|W1)P(W1) + P(W2|B1)P(B1) + P(W2|R1)P(R1)

= w−1
w+ b+ r

w

w+ b+ r
+ w+ 1
w+ b+ r

b

w+ b+ r
+ w+ 1
w+ b+ r

r

w+ b+ r
.

�

1.9 Bayes’ Theorem
The power of Bayes’ rule is that in many situations where we want to compute P(A|B) it turns out
that it is difficult to do so directly, yet we might have direct information about P(B|A). Bayes’ rule
enables us to compute P(A|B) in terms of P(B|A).

Bayes rule with two events

P(A|B) = P(A∩B)
P(B) (conditional probability)

= P(B|A)P(A)
P(B) (Bayes rule v1)

= P(B|A)P(A)
P(B|A)P(A) + P(B|Ac)P(Ac) (Bayes rule v2)

Bayes rule with a division of S. If we have a division A1, . . . ,An of the sample space S, then by
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the Law of Total Probability P(B) =
n∑
i=1

P(B|Ai)P(Ai) and:

P(Ai|B) = P(Ai∩B)
P(B) (conditional probability)

= P(B|Ai)P(Ai)
n∑
j=1

P(B|Aj)P(Aj)
(Bayes rule v3)

Example 57. In a bolt factory, machines 1,2 and 3 respectively produce 20 %, 30% and 50% of
the total output. Of their output, 5%, 3% and 2% are defective. A bolt is selected at random.

a) What is the probability that it is defective?
b) Given that it is defective, what is the probability that it was made by machine 1?

Hint: Let D be the event that the bolt is defective and M1,M2,M3 be the events that the
selected bolt comes from machines 1,2 and 3 respectively.

Solution: We have
P(M1) = 0.2,P(M2) = 0.3,P(M3) = 0.5 and
P(D|M1) = 0.05,P(D|M2) = 0.03,P(D|M3) = 0.02.
a) From the law of total probability,

P(D) = P(D|M1)P(M1) + P(D|M2)P(M2) + P(D|M3)P(M3) = 0.029

b)

P(M1|D) = P(D|M1)P(M1)
P(D) = 0.52

�

Example 58. 1/10 of men and 1/7 of women are color-blind. A person is chosen at random and
that person is color-blind. What is the probability that the person is male. Assume males and
females to be in equal numbers. Let M=male, F=female, C=color-blind.

Solution: Let M=male, F=female, C=color-blind. Then

P(M |C) = P(M ∩C)
P(C)

= P(C|M)P(M)
P(C|M)P(M) + P(C|F )P(F )

=
1
10 · 12

1
10 · 12 + 1

7 · 12
.

�

Example 59. A transmitter sends binary bits, 80% 0’s and 20% 1’s. When a 0 is sent, the receiver
will detect it correctly 80% of the time. When a 1 is sent, the receiver will detect it correctly
90% of the time.
(a) What is the probability that a 1 is sent and a 1 is received?
(b) If a 1 is received, what is the probability that a 1 was sent?

Solution: We will consider the following events.
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S0: event that the transmitter sent a 0.
S1: event that the transmitter sent a 1.
R1: event that 1 was received.

(a) We are interested in finding P(S1∩R1) .

P(S1∩R1) = P(R1|S1)P(S1)
= 0.2×0.9
= 0.18

(b) We are interested in finding P(S1|R1).

P(S1|R1) = P(S1∩R1)
P(R1) = P(S1∩R1)

P(R1∩S1) + P(R1∩S0)

= = P(S1∩R1)
P(R1|S1)P(S1) + P(R1|S0)P(S0) = 0.18

0.18 + P(R1|S0)P(S0)

= 0.18
0.18 + 0.8×0.2 = 0.5294

�

Example 60. An urn contains 5 white and 10 black balls. A fair die is rolled and that number of
balls are chosen from the urn.
(a) What is the probability that all of the balls selected are white?
(b) What is the conditional probability that the die landed on 3 if all the balls selected are white?

Solution: We will consider the following events.

W : event that all of the balls chosen are white.
Di: event that the die landed on i, 1≤ i≤ 6.

(a) We want to find P(W ). We can do this as follows.

P(W ) =
6∑
i=1

P(W ∩Di)

=
6∑
i=1

P(Di)P(W |Di)

=
6∑
i=1

1
6

(5
i

)
(15
i

)
= 1

6

(
5
10 + 10

105 + 10
455 + 5

1365 + 1
3003

)
= 0.1035
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(b) We want to find P(D3|W ). This can be done as follows.

P(D3|W ) = D3∩W
P(W )

= P(D3)×P(W |D3)
P(W )

=
1/6×

(5
3
)(15

3
)

0.1035

= 1/6×10/455
0.1035

= 0.00366
0.1035

= 0.03539

�

Example 61. In answering a question on a multiple choice test, a student either knows the answer
or the student just guesses. Suppose that the probability that the student knows the answer is
0.75. Assuming that there are 5 choices for each multiple-choice question, what is the conditional
probability that the student knew the answer to a question given that the student answered it
correctly?

Hint: Let:

C = student answers the question correctly,
K = student knows the answer.

Solution:
The probability that the student who guesses will be correct is 1/5 = 0.20 = P(C|Kc).

P(K|C) = P(K ∩C)
P(C)

= P(C|K)P(K)
P(C|K)P(K) + P(C|Kc)P(Kc)

= 1 ·0.75
1 ·0.75 + 0.20 ·0.25

= 0.9375

�

Example 62. Stores A, B and C have 50, 75 and 100 employees respectively. and 50%, 60% and
70% of the employees are women. Resignations are equally likely among all employees, regardless
of sex. One employee resigns and is a woman. What is the probability that she works in store A?

Solution: Let W be the event that a woman employee resigns from anywhere, and let A, B
and C denote the event that a randomly selected employee works at the respective store. Then
P(A) = 50/225, P(B) = 75/225 and P(C) = 100/225. Likewise the probabilities of resignation
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of a woman from a store is given by the information to be P(W |A) = 0.50, P(W |B) = 0.60, and
P(W |C) = 0.70 Then we can use Bayes Theorem (re-deriving it in the process of using it):

P(A|W ) = P(A∩W )
P(W )

= P(W |C)P(C)
P(W |A)P(A) + P(W |B)P(B) + P(W |C)P(C)

= (0.50)(50/225)
(0.50)(50/225) + (0.60)(75/225) + (0.70)(100/225)

≈ 0.17857

�

Example 63. (Adopted from Meyer) Outside of their hum-drum duties as CS-20 Teaching
Assistants, Nick is trying to learn to levitate using only intense concentration and Keenan is
trying to become the world champion flaming torch juggler. Suppose that Nick’s probability of
success is 1/6, Keenan’s chance of success is 1/4, and these two events are independent.

a) If at least one of them succeeds, what is the probability that Nick learns to levitate?
b) If at most one of them succeeds, what is the probability that Keenan becomes the world

flaming torch juggler champion?
c) If exactly one of them succeeds, what is the probability that it is Nick?

Solution: Define the events:
N: Nick succeeds K: Keenan succeeds L: at Least one succeeds
a)

P(N |L) = P(L|N)P(N)
P(L)

=
1× 1

6
P(L)

=
1× 1

6
P(NKc) + P(N cK) + P(NK)

=
1× 1

6
3
24 + 5

24 + 1
24

= 4
9

b) 5
23

c) 3
8 �

1.9.1 Updating probability estimates
It is useful to use Bayes rule in terms of updating our belief about a hypothesis A in the light
of new evidence B. We say that our posterior belief P(A|B) is calculated by multiplying our
prior belief P(A) by the likelihood P(B|A) that B will occur if A is true.
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The formulas are the same, e.g.

P(A|B) = P(B|A)P(A)
P(B|A)P(A) + P(B|Ac)P(Ac)

but now we interpret everything on the right-hand side of this equation with the information prior
to knowing the new evidence B.

Example 64. — Criminal investigation (adapted from Ross). In a certain stage of a criminal
investigation, the inspector in charge is 60% convinced of the guilt of a certain suspect. Suppose
that a new piece of DNA evidence uncovered that the criminal has diabetes. This prompted
the inspector to test the suspect for diabetes, and the test came out positive, indicating that
the suspect does have diabetes. If 10% of the population has diabetes how certain should that
inspector be of the guilt of the suspect?
Let G be the event that the suspect is guilty, and D the event that the suspect has diabetes.

Solution:
We have P(G) = 0.6, P(D|G) = 1 because we know that the criminals has diabetes, P(D|Gc) = 0.1
because before the evidence came to light this is our best guess. Therefore,

P(G|D) = P(D|G)P(G)
P(D)

= P(D|G)P(G)
P(D|G)P(G) + P(D|Gc)P(Gc)

= (1)(0.6)
(1)(0.6) + (0.1)(0.4) = 0.9375

�

Example 65. — A medical tests of rare diseases* Medical tests for a certain condition are not
perfect. Consider a test that, when performed on an affected person, it comes up positive 95% of
the times and yields a “false negative" 5% of the times. When the test is performed on a healthy
person the test comes up negative in 99% of the cases and yields a “false positive" in 1% of the
cases. If 0.5% of the population actually have the condition, what is the probability that Alice
has the condition given that her test came up positive?
We will consider the following events to answer the question.

A: event that Alice has the medical condition.
B: event that Alice tested positive.

Solution: We are interested in P(C|P ). From the definition of conditional probability and the
total probability theorem we get

P(A|B) = P(B|A)P(A)
P(B|A)P(A) + P(B|Ac)P(Ac)

= 0.95×0.005
0.95×0.005 + 0.01×0.995

= 0.323

This result means that 32.3% of the people who are tested positive actually suffer from the condition!
�
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Example 66. — Quality of concrete material* In order to ensure the quality of concrete material
used in a reinforced concrete construction, concrete cylinders are collected at random from
concrete mixes delivered to the construction site by a mixing plant. Past records of concrete
from the same plant show that 80% of concrete mixes are good or of satisfactory quality.
To further ensure that the concrete delivered on site is of good quality, the engineer requires
that one cylinder among those collected each day be tested for minimum compressive strength.
The test method is not perfect—its reliability is only 95%, meaning the probability that a
good-quality concrete cylinder will pass the test is 0.95, or that a poor-quality cylinder can pass
the test is 0.05. (10 points)
(a) If a concrete cylinder passes the test, find the probability that it is a good-quality concrete
delivered on site. (10 points)
(b) Now, suppose the engineer is not satisfied with just testing one cylinder, and requires that
a second cylinder be tested. If the second cylinder tested also gave a positive result, find the
probability that the concrete is of good quality.
(c) If the third cylinder tested didn’t pass the test, find the probability that the concrete is of
good quality. (10 points)

Solution: Answer: (a) 0.987 (b) 0.999 (c) 0.981

(a) Define the following events:
G = good quality concrete
T = a concrete cylinder passes the test According to the available information, we have:

P (G) = 0.8
P (T |G) = 0.95
P (T |Gc) = 0.05

Then, if a concrete cylinder passes the test, the probability that it is a good-quality concrete
delivered on site is updated as follows:

P (G) = P (T |G)P (G)
P (T |G)P (G) +P (T |Gc)P (Gc)

= 0.95×0.80
0.95×0.80 + 0.05×0.20

= 0.987

(b) Here, the second cylinder is tested positive, so now:

P (G) = 0.987

P (G|T ) = P (T |G)P (G)
P (T |G)P (G) +P (T |Gc)P (Gc)

= 0.95×0.987
0.95×0.987 + 0.05× (1−0.987)

= 0.999
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(c) The third cylinder is tested negative, so

P (G) = 0.999

P (G|T c) = P (T c|G)P (G)
P (T c|G)P (G) +P (T |G)P (Gc)

= 0.05×0.999
0.05×0.999 + 0.95× (1−0.999) = 0.981

�

1.10 More Problems
Example 67. Suppose the travel time between two major cities A and B by air is 7 or 8 hr if
the flight is nonstop; however, if there is one stop, the travel time would be 10, 11, or 12 hr. A
nonstop flight between A and B would cost $1000, whereas with one stop the cost is only $650.
Then, between cities B and C, all flights are nonstop requiring 2 or 3 hours at a cost of $250.
(There is no flight from A to C)
For a passenger wishing to travel from city A to city C,
(a) What is the possibility space or sample space of his travel times from A to B? From A to C?
(b) What is the sample space of his travel cost from A to B?
(c) If T=travel time from city A to city C, and S=cost of travel from A to C, what is the sample
space of T and S?

Solution: (a) Sample space of travel time from A to B = {7, 8, 10, 11, 12}
Sample space of travel time from A to C = {9, 10, 11, 12, 13, 14, 15}
(b) Sample space of travel cost from A to B = {650, 1000}
(c) Sample space of T = {9, 10, 11, 12, 13, 14, 15}
Sample space of S = {900, 1250}
Sample space of T and S = {{9, 1250}, {10, 1250}, {11, 1250}, {12, 900}, {13, 900}, {14, 900},
{15, 900}}

�

Example 68. Two construction companies a and b are bidding for projects. Define A as the
event that Company a wins a bid, and B as the event that Company b wins a bid.
Sketch the Venn diagrams for the sample spaces and their subsets of the following:
(a) Company a is submitting a bid for one project, and Company b is submitting its own bid for
another project. (In this case, it is possible for both companies to win their respective bids)
(b) Companies a and b are submitting bids for the same project, and there are also other bidders
for the project.
(c) Companies a and b are the only companies submitting competing bids for a single project.

Solution: From Ang and Tang textbook Example 2.9 and Example 2.10 on Page 38-39. In class.
�

Example 69. In a process that manufactures aluminum cans, the probability that a can has a
flaw on its side is 0.03, the probability that a can has a flaw on its top is 0.05, and the probability
that a can has a flaw on both the side and the top is 0.01. What is the probability that it has
no flaw?
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Solution: P(on side or on top) = P(on side) + P(on top) - P(on side and on top) = 0.07
P(no flaw) = 1 - P(on side or on top) = 0.93

�

Example 70. (a) A die is rolled once. What is the probability that the result is even, if it is
known that the result is higher than 3?
(b) Two dice are rolled once. what is the sample space of this experiment? what is the probability
that the sum is greater than 7?

Solution:
Answer: (a) 2/3 (b) 15/36 (0.417)
A: Result is even
B: Result is higher than 3
C: Sum is greater than 7
(a) P(A|B) = P(A∩B)

P(B) = P({2,4,6}∩{4,5,6})
P({4,5,6}) = P({4,6})

P({4,5,6}) =
1
3
1
2

= 2
3

(b) Sample space = {{1, 1}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 1}, {2, 2}, {2, 3}, {2, 4}, {2,
5}, {2, 6}, {3, 1}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {3, 6}, {4, 1}, {4, 2}, {4, 3}, {4, 4}, {4, 5}, {4, 6},
{5, 1}, {5, 2}, {5, 3}, {5, 4}, {5, 5}, {5, 6}, {6, 1}, {6, 2}, {6, 3}, {6, 4}, {6, 5}, {6, 6}}
Sample space of the sum = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
P(C) = 15

36 = 0.417 �

Example 71. A team of two engineers, A and B, was assigned to check a set of computations.
The two work simultaneously but separately and independently. The probability of engineer A
spotting a given error is 0.7, whereas that for B is 0.8.
(a) Suppose there is only one error in the computation. What is the probability that this error
will be spotted by this team?
(b) If the error in part (a) was identified, what is the probability that it was discovered by A
alone?

Solution:
Answer: (a) 0.94 (b) 0.149
A: A spots the error
B: B spots the error
C: Error spotted
(a) P(C) = 1 - P(Cc) = 1 - P(Ac)P(Bc) = 1 - (1 - 0.7)×(1 - 0.8) = 0.94
(b) P(ABc|C) = P(C|ABc)

P(C|ABc)·P(ABc)+P(C|AcB)·P(AcB)+P(C|AB)·P(AB)+P(C|AcBc)·P(AcBc) = 0.149
�

Example 72. The proportion of people in a given community who have a certain disease is
0.01. A test is available to diagnose the disease. If a person has the disease, the probability
that the test will produce a positive signal is 0.98. If a person does not have the disease, the
probability that the test will produce a positive signal is 0.02. If a person tests positive, what is
the probability that the person actually has the disease?

Solution:
Answer: 0.331
D: The person actually has the disease
+: The tests gives a positive signal
Using Bayes’ rule:
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P(D|+) = P(+|D)P(D)
P(+|D)P(D)+P(+|Dc)P(Dc) = (0.98)(0.01)

(0.98)(0.01)+(0.02)(1−0.01) = 0.331
�

Example 73. — Tornadoes** 100 structures are located in a region where tornado wind force
must be considered in its design. Suppose that from the records of tornadoes for the past 200
years, it is estimated that during any 5-year period the probability of having 0, 1 and 2 tornadoes
is 0.5, 0.3 and 0.2, respectively. If a tornado occurs, a structure will be damaged with probability
p= 5%.

a) if two tornadoes occurred last year, how many structures do you expect to have been
damaged?

b) what is the probability the a structure will be damaged in the next five years?
c) how many structures do you expect to be damaged in the next five years?

Solution:
a) If two tornadoes occurred last year, how many structures do you expect to have been damaged?

Let
Ai be the events of having i= 0,1,2 tornadoes last year, and
D the event that a particular structure was damaged last year.
For any particular structure, it is easier to calculate the probability of no damage given the
two tornadoes (= (1−p)2), so

P(D|A2) = 1−P(Dc|A2)
= 1− (1−p)2 = 0.0975

and the answer would be 100P(D|A2) = 9.75→ 10 structure.
b) what is the probability the a structure will be damaged in the next five years? Let Ai be the

events of having i= 0,1,2 tornadoes in the next five years, and
D the event that a structure will be damaged in the next five years.
Since we don’t know the number of tornadoes that will occur, we use the total probability
rule:

P(Dc) =
2∑
i=0

P(Dc|Ai)P(Ai)

=
2∑
i=0

(1−p)iP(Ai)

= (1−p)0P(A0) + (1−p)1P(A1) + (1−p)2P(A2)
=
(
(1)(0.5)

)
+
(
(0.95)(0.3)

)
+
(
(0.952)(0.2)

)
= 0.9655

and the answer is 1-0.9655=0.0345.
c) how many structures do you expect to be damaged in the next five years? 3.45→ between 3

and 4 structures.
https://eli.thegreenplace.net/2018/conditional-probability-and-bayes-theorem/

�





2. Random Variables

Often in engineering or the natural sciences, outcomes of random experiments are numbers associ-
ated with some physical quantities. Such outcomes, called random variables, will be denoted by
capital letters, e.g.

X=“time between Tech Trolleys at the CRC stop” or
Y=“number of customers per day an Uber driver serves”,

and a particular realizations of a random variable by lowercase letters, e.g.

x= 11.4 min, or y = 6 customers.

Random variable: the results of an experiment expressed as a number. Mathematically, a func-
tion X : S→R that maps points from the sample space to the real line is called a random variable.

There are two types of random variables:
A discrete random variable is a rv which takes a finite or countable number of values.
A continuous random variable is a rv which takes values in (an interval of) the real line.

S

X=number
of H R

HH

TH

HT

TT

0 1 2
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Events are statements of the type “X ≤ x”, “X > x”, or “a < X < b”. In general, an event is
“X ∈ A” where A⊆ R.

2.1 Probability distribution function
The function

FX (x) = P(X ≤ x), x ∈ R,

is called the probability distribution, cumulative distribution function, or CDF for short.
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1
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CDF of a continuous rv

The probability of any statement about the X is computable when FX (x) is known, e.g.:

• The complement rule: P(Ac) = 1−P(A) becomes P(X > a) = 1−P(X ≤ a) = 1−FX (a)
• Probability of X falling on the interval (a,b]: P(a < X ≤ b) = FX (b)−FX (a)
• Conditional probability: P(A|B) = P(A∩B)

P(B) becomes

P(a < X ≤ b | X ≤ c) = P(a < X ≤ b ∩ X ≤ c)
P(X ≤ c)

= P(a < X ≤ c)
P(X ≤ c) (assuming a≤ c≤ b)

= FX (c)−FX (a)
FX (c)

X

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

a c b

Fact 2.1 Let FX be the cumulative distribution function of a random variable X. Then,
1. FX is a non-decreasing function.
2. FX(∞) = 1.
3. FX(−∞) = 0.
4. FX is right continuous, i.e., the function is equal to its right hand limit.

2.2 Quantiles (aka percentiles)
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The quantile xα, 0≤ α≤ 1, for a random variable X is given by:

P(X ≤ xα) = α, → xα = F−1
X

(α).

The inverse function F−1
X

(α) is called the “quantile function”.

Important quantiles are:
• median (50th-percentile): x0.5
• upper quartile (75th-percentile): x0.75
• lower quartile (25th-percentile): x0.25
• quintiles: x0.2, x0.4, x0.6, x0.8
• deciles: x0.1, x0.2, . . .
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Example 74. Derive the quantile function for the continuous CDF in the above figure, where:

FX (x) = 1
e−2x+ 1

Solution: Solving for xα in α = 1
e−2xα+1 gives

xα = 1
2 log

(
α

1−α

)

�

2.3 Discrete Random Variables
We saw that if X takes a finite or countable number of values it is called discrete random variables
and the distribution function FX (x) is a “stair” looking function that is constant except the possible
jumps. The size of a jump at point x is equal to the probability P(X = x), denoted by pX (x), and
called the probability-mass function.

Probability mass function (PMF). Gives the probability of a discrete random variable X having
value x is called the probability mass function of X. It is denoted as

pX (x) = P(X = x)
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Observe that
FX (a) =

∑
x≤a

pX (x)

and ∑
x∈S

pX (x) = 1

This is because the events X = x are disjoint and hence form a division of the sample space S.
These probabilities pX (x) are often referred to as probability masses since they represent discrete
(point) masses of probability at specific locations along the real axis, just as point charges in
electrostatics are used to represent discrete charges distributed along a line. These probabilities,
written or plotted as a function of x, is called the probability mass function (PMF).

Example 75. Let X be the result of a dice roll.
a) Plot the CDF and PMF of X.
b) Determine P(X > 3)
c) Determine P(2<X ≤ 5)
d) Determine P(2<X ≤ 5 | X ≤ 3)
e) Determine the median, upper quartile and lower quartile

1 2 3 4 5 6

1/6

pX(3) pX(5)

x

PM
F
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STOP! This is called the discrete uniform distribution in (1, 6).

a) Plot the CDF and PMF of X.
b) P(X > 3) = 1/2
c) P(2<X ≤ 5) = 1/2
d) P(2<X ≤ 5 | X ≤ 3) = 1/3
e) the median, upper quartile and lower quartile: 3, 5 and 2

Example 76. Consider the experiment of tossing three fair coins. Let X be the random variable
that denotes the number of heads that result.

a) Plot the CDF and PMF of X.
b) Determine P(X > 2)
c) Determine P(0<X ≤ 3)
d) Determine P(0<X ≤ 3 | X ≤ 2)
e) Determine the median, upper quartile and lower quartile
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Solution: The sample space is given by

H H H
H H T
H T H
H T T
T H H
T H T
T T H
T T T

Therefore, the PMF of X is given by

pX (x) =
{

1/8 if x= 0 or x= 3
3/8 otherwise

0 1 2 3 4

0

1/8

3/8

x

PM
F
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0.88
1

x
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D
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a) Plot the CDF and PMF of X.
b) P(X > 2) = 0.125
c) P(0<X ≤ 3) = 0.875
d) P(0<X ≤ 3 | X ≤ 2) = 0.857
e) the median, upper quartile and lower quartile=1, 2, 1

�

Example 77. — Sum of two dice* Let X be the sum of rolling 2 dice.
a) Plot the CDF and PMF of X.
b) Determine P(X ≥ 3)
c) Determine P(5<X ≤ 8)
d) Determine P(5<X ≤ 8 | X ≤ 10)
e) Determine the median, upper quartile and lower quartile

Die 1/Die 2

2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

6 7 8 9 10 11

7 8 9 10 11 12

Sum of 2 dice

Solution The PMF for X is given by

pX (x) =



1/36, x= 2,12
2/36, x= 3,11
3/36, x= 4,10
4/36, x= 5,9
5/36, x= 6,8
6/36, x= 7
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STOP! This is called the discrete triangular distribution

a) Plot the CDF and PMF of X.
b) P(X ≥ 3) = 0.972
c) P(5<X ≤ 8) = 0.44
d) P(5<X ≤ 8 | X ≤ 10) = .485
e) the median, upper quartile and lower quartile=7, 9, 5

Example 78. — Sum of three dice Let X be the sum of rolling 3 dice.
a) Plot the CDF and PMF of X.
b) Determine P(X > 5)
c) Determine P(5≤X ≤ 15)
d) Determine P(5≤X ≤ 15 | X ≤ 10)
e) Determine the median, upper quartile and lower quartile=7, 9 and 5

Solution The PMF for X will be derived in future chapters. In the meantime, observe the bell
shape that arises (thanks to the Central Limit theorem).

5 10 15 20

0

0.05

0.1

x

PMF of discrete rv: pX(x)

0 5 10 15
0

0.25

0.5

0.75

1

pX(10)

x

CDF of a discrete rv: FX(x)

STOP! This PMF is very close to the normal distribution; this resemblance is a statement
of the Central Limit theorem.
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a) Plot the CDF and PMF of X.
b) P(X > 5) = 0.953
c) P(5≤X ≤ 15) = 0.935
d) P(5≤X ≤ 15 | X ≤ 10) = 0.963
e) the median, upper quartile and lower quartile=10, 13, 8

STOP! Notice that the sample points of a discrete random variable are not necessarily
evenly spaced:
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Example 79. You have a coin with probability p of getting ‘Heads’. You flip this coin twice.
For each flip, if the result is ‘Heads’, you win $30. If the result is ‘Tails’, you lose $20.
Let X be your profit in the game.

a) What is the sample space?
b) Describe the probability mass function of X.
c) Describe the cumulative distribution function of X.

Solution:
a)

S =
{
(30 + 30),(30−20),(−20−20)

}
= {60,10,−40}

b)

P(X = x) =


p2 ; x= 60
2p(1−p) ; x= 10
(1−p)2 ; x=−40

c)

FX(X) =



0 ; x <−40
(1−p)2 ; −40≤ x < 10
(1−p)2 + 2p(1−p) ; 10≤ x < 60
(1−p)2 + 2p(1−p) +p2 ; x≥ 60

�
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2.4 Expectation
The expectation (also known as mean) is probably the most important
measure of central tendency of a rv. The others are mode and median.

Expectation of a discrete rv Let X be a discrete rv with a set of possible
values S and PMF pX (x). The expected or mean value of X is

E(X) = µX =
∑
x∈S

x ·pX (x).

The symbol µX will be used interchangeably with E(X).

In example 76, the expectation of the number of heads is given by

E(X) = 0× 1
8 + 3× 1

8 + 1× 3
8 + 2× 3

8 = 3
2

STOP! As seen from the example, the expectation of a random
variable may not be not be on its sample space.

Example 80. Find E(X) where X is the outcome of rolling a fair dice.

Solution: Let X be the random variable that denotes the result of a single roll of dice. The PMF
for X is given by

pX (x) = 1
6 , x= 1,2,3,4,5,6.

The expectation of X is given by

E(X) =
6∑

x=1
pX (x) ·x= 1

6 (1 + 2 + 3 + 4 + 5 + 6) = 3.5

�

Example 81. When we roll two dice what is the expected value of their sum?

Solution Let X be the random variable denoting the sum. From example 77 above, we know that
the PMF for X is given by

pX (x) =



1/36, x= 2,12
2/36, x= 3,11
3/36, x= 4,10
4/36, x= 5,9
5/36, x= 6,8
6/36, x= 7
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The expectation of X is given by

E(X) =
12∑
x=2

pX (x) ·x

= 1
36 ×2 + 2

36 ×3 + 3
36 ×4 + 4

36 ×5 + 5
36 ×6 + 6

36 ×7 +
5
36 ×8 + 4

36 ×9 + 3
36 ×10 + 2

36 ×11 + 1
36 ×12

= 252
36 = 7

Example 82. A class of 120 students is driven in 3 buses to a jazz concert. There are 36 students
in the first bus, 40 in the second, and 44 in the third bus. When the buses arrive, a student is
randomly chosen. Let X denote the number of students on the bus of the chosen student. Find
E(X).

Solution:

P(X = 36) = 36
120

P(X = 40) = 40
120

P(X = 44) = 44
120

Therefore,

E(X) =
∑
x
x ·pX (x)

= 36
(

36
120

)
+ 40

(
40
120

)
+ 44

(
44
120

)
= 40.2667

�

Example 83. — surge suppressor The owner of a small firm has just purchased a personal com-
puter, which she expects will serve her for the next two years. The owner has been told that she
"must" buy a surge suppressor to provide protection for her new hardware against possible surges
or variations in the electrical current, which have the capacity to damage the computer. The
amount of damage to the computer depends on the strength of the surge. It has been estimated
that there is a 2% chance of incurring 350 dollar damage, 4% chance of incurring 300 dollar
damage, and 11% chance of incurring 100 dollar damage from a surge within the next two years.
An inexpensive suppressor, which would provide protection for only one surge, can be purchased.

How much should the owner be willing to pay if she makes decisions on the basis of expected
value?

Solution: Let the random variable D be the amount of damage to the computer (in dollars) caused
by a surge within the next two years. Then

E(D) = 350P(D = 350) + 300P(D = 300) + 100P(D = 100)
= 350 ·0.02 + 300 ·0.04 + 100 ·0.11 = 30
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Hence the owner expects her computer to incur $30 of damage from a surge in the next two years
and so should be willing to pay $30 for a surge protector. �

2.4.1 Expectation of a function of X
Many times where interested on a function of a random variable X for which the distribution pX (x)
is known.

Y = g(X)
If all we want is the expected value E(Y ), there are two options:

1. compute the PMF of Y,pY (y) (chapter 5), the sample space of Y,SY and use the definition of
expectation

E(Y ) = µ
Y

=
∑

Y ∈SY

y ·pY (y).

2. use Fact 2.2 below:

Fact 2.2 — Expectation of a function of X. For any function g(X),

E
(
g(x)

)
=
∑
x∈S

g(x) ·pX (x)

Example 84. X has the following distribution.

P(X =−1) = 0.2
P(X = 0) = 0.5
P(X = 1) = 0.3

Find E
[
X2
]
.

Solution:[1] Using
E
(
g(x)

)
=
∑
x∈S

g(x) ·pX (x)

we have:
E
(
X2
)

= (−1)2(0.2) + (02)(0.5) + (12)(0.3)
= 0.5

�
Solution:[2] Let

Y =X2

Using option one above, we have
P(Y = 0) = P(X2 = 0)

= P(X = 0)
= 0.5

P(Y = 1) = P(X2 = 1)
= P(X =−1) + P(X = 1)
= 0.5
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Therefore,

E(Y ) = E
[
X2
]

= (0)(0.5) + (1)(0.5)
= 0.5

�

Example 85. Let the probability distribution of X be

X -2 -1 0 1 2
P (X = x) 0.25 0.1 0.2 0.2 0.25

Calculate E
(|X|).

Solution: Using fact 2.2:
E(Y ) = E(|X|) =

∑
x∈SX

|x|×P(X = x)

= 2∗0.25 + 1∗0.1 + 0∗0.2 + 1∗0.2 + 2∗0.25
= 1.3

�
Solution: Using option one above, define Y = |X|, and we have to calculate E(Y ).

SY = {0,1,2}
P(Y = 0) = P(|X|= 0) = P(X = 0) = 0.2
P(Y = 1) = P(X = 1) + P(X =−1) = 0.2 + 0.1 = 0.3
P(Y = 2) = P(X = 2) + P(X =−2) = 0.25 + 0.25 = 0.5

Hence

E(Y ) = 0×0.2 + 1×0.3 + 2×0.5 = 1.3

�

Example 86. Show that for any constants a,b and random variable X,

E(a+ bX) = a+ b E(X)

Solution:

E(a+ bX) =
∑
x

(a+ bx)P(X = x)

= a
∑
x

P(X = x) + b
∑
x
x P(X = x)

= a+ b E(X)

�
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2.4.2 Variance
We are interested in calculating how much a random variable deviates from its mean, some measure
of X−E(X). But we do not want the positive and the negative deviations to cancel out each other.
This suggests that we should use the absolute value |X−E(X) |. But working with absolute values
is messy. It turns out that squaring ofX−E(X) is more useful. This leads to the following definition.

Variance The variance of a random variable X is defined to be

V(X) = E
[(
X−E(X)

)2]
The symbol σ2

X
will be used interchangeably with V(X).

Shortcut formula for the Variance

V(X) = E
(
X2
)
−E(X)2

Proof.

E
(
(X−E(X))2

)
= E

(
X2−2XE(X) +E(X)2)

= E
(
X2
)
−2E

(
XE(X)

)
+E(X)2

= E
(
X2
)
−2E(X)2 +E(X)2

= E
(
X2
)
−E(X)2

In step 2 we used the linearity of expectation and the fact that E(X) is a constant.
The standard deviation of a random variable X is

σX =
√

V(X)

The advantage is that it has the same units as X, so it is easier to interpret compared to the
variance.

Coefficient of variation The coefficient of variation of a random variable X is defined as

δX = σX
|µX |

provided µX 6= 0. The big advantage here is that the coefficient of variation is dimensionless! As
a rule of thumb, when

δX < 0.3
the random variable has moderate uncertainty.

Fact 2.3

V(aX+ b) = a2 V(X)
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Proof.

V(aX+ b) = E
[(
aX+ b−E(aX+ b)

)2]
= E

[(
aX+ b−aE(X)− b)2]

= E
[
a2 (X−E(X)

)2]
= a2 E

[(
X−E(X)

)2]
= a2 V(X)

�

Example 87. Calculate V(X) where X represents the outcome of rolling a fair dice.

Solution:

E(X) =
6∑

x=1

1
6x

= 7
2

E
[
X2
]

=
6∑

x=1

1
6x

2

= 91
6

Therefore,

V(X) = E
[
X2
]
−E(X)2

= 91
6 −

49
4

= 35
12

Notice that the coefficient of variation of a dice is about 0.5:

δX = σX
|µX |

=

√
35/12
7/2 ≈ 0.49

�

Example 88. * Recall example 79. You have a coin with probability p of getting ‘Heads’. You
flip this coin twice. For each flip, if the result is ‘Heads’, you win $30. If the result is ‘Tails’, you
lose $20.
Let X be your profit in the game.

a) What is the expected value of X?
b) What is the value of p upto which you would agree to participate in the game?
c) What is V(X)?
d) What is σX?

Solution:
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a)

E[X] = (−40)(1−p)2 + (10)2p(1−p) + (60)p2

= 100p−40

b) 100p−40> 0→ p > 2/5
c) Let’s use V(X) = E

[
X2
]
−E(X)2:

E
[
X2
]

= (−40)2(1−p)2 + (10)22p(1−p) + (60)2p2

= 5000p2−3000p+ 1600
E(X)2 = (100p−40)2

= 10000p2−8000p+ 1600

Therefore,

V(X) = E
[
X2
]
−E(X)2

= 5000p(1−p)

d)

σX =
√

V(X)

=
√

5000p(1−p)

�

Example 89. Consider three random variables X,Y,Z measured in the same units. Their
probability mass distribution is as follows.

P(X = x) =
{

1/2, x=−2
1/2, x= 2

P(Y = y) =


0.001, y =−10
0.998, y = 0
0.001, y = 10

P(Z = z) =


1/3, z =−10
1/3, z = 0
1/3, z = 10

Which of the above random variables is more “spread out”?
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Solution: It is easy to see that E(X) = E(Y ) = E(Z) = 0.

V(X) = E
(
X2
)

= 0.5 · (−2)2 + 0.5 · (2)2

= 4
V(Y ) = E

(
Y 2
)

= 0.001 · (−10)2 + 0.998 ·02 + 0.001 · (10)2

= 0.2
V(Z) = E

(
Z2
)

= (1/3) · (−5)2 + (1/3) ·02 + (1/3) · (5)2

= 16.67

Thus Z is the most spread out and Y is the most concentrated. �

2.5 Jointly Distributed Discrete Random Variables
There are many practical situations where we need to deal with more than two measurement
simultaneously. The Joint Probability Distribution of (X,Y ) describes the joint random behavior
of X and Y .
For instance we might be interested in the relationship between heights and weights of a population.
Let (Xi,Yi) denote the (weight, height) of person i, then (Xi,Yi) are related since we can expect
that if Xi is large/small then the associated Yi tends to be large/small. Thus Xi and Yi are
correlated and we should describe the behavior of (Xi,Yi) jointly (together).
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→ data source
Histogram of the weight/height data:

The data for the histogram is:

W\H 147 - 157 157 - 167 167 - 177 177 - 187 187 - 197 197 - 207
42 - 52 3 18 6 0 0 0
52 - 62 0 21 82 21 0 0
62 - 72 0 7 57 50 6 0
72 - 82 0 2 23 61 28 1
82 - 92 0 0 9 38 35 5
92 - 102 0 0 0 10 10 5
102 - 112 0 0 1 2 2 3
112 - 122 0 0 0 1 0 0

Dividing this table entries by the sum (507 individuals) would give the joint PMF.
In general, a joint distribution looks like this:

http://ww2.amstat.org/publications/jse/v11n2/datasets.heinz.html
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2.5.1 Chapter 1 results in PMF notation
Recall from chapter 1 For two events A and B in sample space S:

P(A|B) = P(A∩B)
P(B) (conditional probability)

P(A∩B) = P(A|B)P(B) (multiplication rule)
P(A∩B) = P(A)P(B) (independence)

P(B) =
n∑
i=1

P(B∩Ai) (total probability, where S is partitioned into A1, . . . ,An)

=
n∑
i=1

P(B|Ai)P(Ai)

These definitions we developed for events in chapter 1 extend to random variables by defining
events A and B and their intersection as

A= (X = x) and B = (Y = y) and A∩B = (X = x,Y = y)

And now we express the results from chapter 1 in PMF notation, that is, in terms of probability
mass functions. We start with P(A∩B), which we now call the joint PMF:

Joint PMF For two random variables X and Y the joint PMF is

pX,Y (x,y) = P(X = x,Y = y)

Note:∑
X

∑
Y

pX,Y (x,y) = 1
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The total probability rule we now call marginal PMF:
Marginal PMF The PMF of a single random variable is called marginal PMF:

pX (x) =
∑
Y

pX,Y (x,y) and pY (y) =
∑
X

pX,Y (x,y)

The conditional probability rule we now call conditional PMF:
Conditional PMF Let X and Y be two discrete random variables. Then the conditional

probability mass function (conditional pmf) of Y given X = x is defined as,

p
Y |X=x(y) = P (Y = y|X = x) = P (Y = y,X = x)

P (X = x) =
pX,Y (x,y)
pX (x)

for y ∈ SY and x ∈ SX . Please note that in the term p
Y |X=x(y) we are thinking as if x is fixed

and y is the variable, but obviously both can vary.

The conditional pmf of X given Y = y for some y ∈ SY is similarly defined as,

p
X|Y=y(x) = P (X = x|Y = y) = P (X = x,Y = y)

P (Y = y) =
pX,Y (x,y)
pY (y)

STOP! The PMF version of the Multiplication Rule:

pX,Y (x,y) = pY (y)p
X|Y (x)

= pX (x)p
Y |X (y)

can be combined with the definition of marginal PMF:

pX (x) =
∑

Y

pY (y)p
X|Y (x)

The condition for independence P(X = x,Y = y) = P(X = x) ·P(Y = y) in PMF notation becomes
Independence of Two Random Variables. Random variables X and Y are independent iif:

pX,Y (x,y) = pX (x)pY (y)

for all (x,y).

Alternative we could use p
X|Y (x) = pX (x) or p

Y |X (y) = pY (y) to check for independence, but the
above definition is the most common.

Calculating probabilities For any two random variables X and Y having joint PMF X:

P
(
(X,Y ) ∈ A)=

∑
(x,y)∈A

pX,Y (x,y)

Finally, let’s define the joint CDF although for some reason it is rarely used in this chapter.
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Joint Cumulative Probability Distribution Function For any two random variables X and Y , the
joint cumulative probability distribution function of X and Y is defined to be

FX,Y (a,b) = P(X ≤ a,Y ≤ b)
=

∑
x≤a,y≤b

pX,Y (x,y)

where a ∈ R and b ∈ R.

Example 90. 3 balls are randomly selected from an urn containing 3 red, 4 white, and 5 blue
balls.
Let X be the number of red balls chosen.
Let Y be the number of white balls chosen.
Find the joint probability mass function of X and Y .

Solution:

P(X = x,Y = y) =

(3
x

)(4
y

)( 5
3−x−y

)
(12

3
)

Therefore,

X\Y 0 1 2 3 TOT =pX (x)
0 10/220 40/220 30/220 4/220 84/220
1 30/220 60/220 18/220 0 108/220
2 15/220 12/220 0 0 37/220
3 1/220 0 0 0 1/220

TOT =pY (y) 56/220 112/220 48/220 4/220 1

�

Example 91. Given the joint distribution of (X,Y ):

X
pX,Y (x,y) 0 1 2

0 3/28 9/28 3/28
Y 1 3/14 3/14 0

2 1/28 0 0/28

are X and Y statistically independent?

Solution: Recall that random variables X and Y are independent iif:

pX,Y (x,y) = pX (x)pY (y)

for all (x,y), and that the marginal distributions are defined as

pX (x) =
∑
Y

pX,Y (x,y) and pY (y) =
∑
X

pX,Y (x,y)
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which correspond to the row totals and column totals:

X
pX,Y (x,y) 0 1 2 pY (y)

0 3/28 9/28 3/28 15/28
Y 1 3/14 3/14 0 3/7

2 1/28 0 0 1/28
pX (x) 5/14 15/28 3/28 1

Since pX,Y (0,0) 6= pX (0) ·pY (0), X and Y are not independent. �

Example 92. In a class there are four freshman boys, six freshman girls, and six sophomore boys.
How many sophomore girls must be present if gender and class are to be independent when a
student is selected at random?

Solution: In class. �

Example 93. * The joint distribution of X and Y is given in the following table

pXY (x,y) X=0 X=1 X=3 TOT
Y=-1 0.11 0.03 0 0.14
Y=2.5 0.03 0.09 0.16 0.28
Y=3 0.15 0.15 0.06 0.36
Y=4.7 0.04 0.16 0.02 0.22
TOT 0.33 0.43 0.24 1

Find a) P (Y −X ≤ 2), b) P (2≤ Y ≤ 4|X = 1).

Solution: a) The best way to do this is to calculate the values of the required function, Y −X in
this case, and highlight the cells that are favorable to our condition, being less than or equal to two
in this case:

Y-X X=0 X=1 X=3
Y=-1 -1 -2 -4
Y=2.5 2.5 1.5 -0.5
Y=3 3 2 0
Y=4.7 4.7 3.7 1.7

Then, we add up all the joint probabilities corresponding to these highlighted cells:

pXY (x,y) X=0 X=1 X=3
Y=-1 0.11 0.03 0
Y=2.5 0.03 0.09 0.16
Y=3 0.15 0.15 0.06
Y=4.7 0.04 0.16 0.02

which gives 0.62.
b)The conditional distribution of Y |X = 1 is :



2.5 Jointly Distributed Discrete Random Variables 75

pY |X=1(y) X=1
Y=-1 0.03/0.43
Y=2.5 0.09/0.43
Y=3 0.15/0.43
Y=4.7 0.16/0.43
TOT 1

and the desired probability is 0.09/0.43+0.15/0.43=0.558.
�

Example 94. The joint distribution of X and Y is given in the following table

pXY (x,y) X=-1 X=-2 X=2 X=3 TOT
Y=-3 0.14 0.14 0.01 0.05 0.34
Y=-1 0.15 0.06 0.06 0.04 0.31
Y=1 0.03 0.1 0.11 0.11 0.35
TOT 0.32 0.3 0.18 0.2 1

Find P (Y +X ≤ 0), P (−2≤X ≤ 2|Y =−1).

Solution: a)0.68 b)0.387 �

Example 95. Roll a balanced dice twice. Define random variables:
• X = number of 4’s
• Y = number of 5’s

(a) Find the joint distribution of X and Y , pX,Y (x,y).
(b) Find P

(
(X,Y ) ∈ A) where A= {2x+y < 3}

Solution:
Possible values of X and Y : x= 0,1,2, y = 0,1,2, x+y ≤ 2.
Sample space

Roll 2
1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
Roll 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

1 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

(36 equally likely sample points)

y

pX,Y (x,y) 0 1 2
0 16/36 8/36 1/36

x 1 8/36 2/36 0
2 1/36 0 0

(Check if
∑

X

∑
Y
pX,Y (x,y) = 1?)
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(b) Find P
(
(X,Y ) ∈ A) where A= {2x+y < 3}

P
(
(X,Y ) ∈ A)= pX,Y (0,0) +pX,Y (0,1) +pX,Y (0,2) +pX,Y (1,0) = 33/36 �

Example 96. Toss a balanced coin 3 times. Define random variables
• X = number of heads
• Y = (number of heads) − (number of tails)

Find the joint distribution of X and Y .

Solution:
Possible values of X and Y :

x = 0,1,2,3
y = −3,−1,1,3

2x−y = 3 (why?)

Sample space

S = {HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}

(8 equally likely sample points)

y
pX,Y (x,y) −3 −1 1 3

0 1/8 0 0 0
1 0 3/8 0 0

x 2 0 0 3/8 0
3 0 0 0 1/8

(Check if ∑
X

∑
Y
pX,Y (x,y) = 1—YES!) �

Example 97. — The Titanic data :
Passenger Status Survivors Fatalities TOTAL
First Class 203 122 325
Second Class 118 167 285
Third Class 178 528 706
Crew 212 673 885
Total 711 1490 2201

There are two random variables in play here,

X = 0 if passenger survived
= 1 if passenger diced
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and

Y = 1 if passenger was in first class
= 2 if passenger was in second class
= 3 if passenger was in third class
= 4 if passenger was a crew member

So we approximate the joint PMF of X and Y as,

X=0 X=1
Y=1 0.09 0.06
Y=2 0.05 0.08
Y=3 0.08 0.24
Y=4 0.10 0.30

For example pX,Y (0,1) = 203
2201 = 0.09.

Find P (X+Y ≤ 2).

Solution:

P (X+Y ≤ 2) = P (X = 0,Y = 1) +P (X = 0,Y = 2) +P (X = 1,Y = 1)
= 0.09 + 0.05 + 0.06
= 0.2

�

Example 98. Let’s see how we can apply conditional probabilities in the titanic example,

X=0 X=1
Y=1 0.09 0.06
Y=2 0.05 0.08
Y=3 0.08 0.24
Y=4 0.10 0.30

Determine the probability of being a survivor given the class.

Solution:
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P (Survivor|First Class) = pX|Y=1(0) =
pX,Y (0,1)
pY (1) = 0.09

0.09 + 0.06 = 0.6

P (Survivor|Second Class) = pX|Y=2(0) =
pX,Y (0,2)
pY (2) = 0.05

0.05 + 0.08 = 0.3846

P (Survivor|Third Class) = pX|Y=3(0) =
pX,Y (0,3)
pY (3) = 0.08

0.08 + 0.24 = 0.25

P (Survivor|Crew) = pX|Y=4(0) =
pX,Y (0,4)
pY (4) = 0.1

0.1 + 0.3 = 0.25

So we see that probability of survival across passenger class is decreasing, although we should be
careful while making remarks like this and consider other factors present. �

2.5.2 Expectation with two random variables
In direct analogy with a single discrete random variable, the expected value of a function of random
variables X and Y is defined as follows:

Expected value rule for multiple random variables

E
(
g(X,Y )

)
=
∑
X

∑
Y

g(x,y)pX,Y (x,y)

Conditional Expectation

E
(
g(X,Y )|Y = y

)
=
∑
X

g(x,y)p
X|Y (x)

Linearity of Expectation
One of the most important properties of expectation that simplifies its computation is the linearity
of expectation. By this property, the expectation of the sum of random variables equals the sum of
their expectations. This is given formally in the following theorem.

Fact 2.4 — Linearity of Expectation. For any finite collection of random variables X1,X2, . . . ,Xn,

E
 n∑
i=1

Xi

=
n∑
i=1

E(Xi)

Proof. We will prove the statement for two random variables X and Y . The general claim can be
proven using induction.
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E(X+Y ) =
∑
x

∑
y

(x+y)pX,Y (x,y)

=
∑
x

∑
y

(xpX,Y (x,y) +ypX,Y (x,y))

=
∑
x

∑
y
xpX,Y (x,y) +

∑
x

∑
y
ypX,Y (x,y)

=
∑
x
x
∑
y
pX,Y (x,y) +

∑
y
y
∑
x
pX,Y (x,y)

=
∑
x
xpX (x) +

∑
y
ypY (y)

= E(X) +E(Y )

�

It is important to note that no assumptions have been made about the random variables while
proving the above theorem. For example, the random variables do not have to be independent for
linearity of expectation to be true.

Example 99. Using linearity of expectation calculate the expected value of the sum of the
numbers obtained when two dice are rolled.

Solution: Let X1 and X2 denote the random variables that denote the result when dice 1 and
dice 2 are rolled respectively. We want to calculate E(X1 +X2). By linearity of expectation

E(X1 +X2) = E(X1) +E(X2)
= 3.5 + 3.5
= 7

�

Example 100. — Indicator (aka Bernouilli) Random Variables. Let X be the random variable
such that

X =
{

1 if event A occurs (with probability p= P(A))
0 otherwise

show that

E(X) = p

V(X) = p(1−p)

Solution:

E(X) = 1×p+ 0× (1−p) = p

E
(
X2
)

= 12×p+ 02× (1−p) = p

V(X) = E
(
X2
)
−E(X)2 = p−p2 = p(1−p)

�
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Example 101. — The hat check problem. Suppose that n people leave their hats at the hat check.
If the hats are randomly returned what is the expected number of people that get their own hat
back?

Solution: Let X be the random variable that denotes the number of people who get their own hat
back. Let Xi,1≤ i≤ n, be the random variable such that

Xi =
{

1 if the i-th person gets his/her own hat back (with probability p= 1/n)
0 otherwise

Thus,

E(Xi) = 1× 1
n

+ 0× (1− 1
n

) = 1
n

Now clearly,

X =
n∑
i=1

Xi =X1 +X2 +X3 + . . .+Xn

By linearity of expectation we get

E(X) =
n∑
i=1

E(Xi) =
n∑
i=1

1
n

= n× 1
n

= 1

So on average, only one person will get his/her hat back! �

Example 102. Suppose we throw n balls into n bins with the probability of a ball landing in
each of the n bins being equal. What is the expected number of empty bins?

Solution: Let X be the random variable denoting the number of empty bins. Let Xi be a random
variable that is 1 if the i-th bin is empty and is 0 otherwise:

Xi =
{

1 if the i-th bin is empty, with probability p= (1−1/n)n
0 otherwise

Clearly

X =
n∑
i=1

Xi

By linearity of expectation, we have

E(X) =
n∑
i=1

E(Xi)

=
n∑
i=1

P(Xi = 1)

=
n∑
i=1

(
1− 1

n

)n

= n

(
1− 1

n

)n
As n→∞, (1− 1

n)n→ 1
e . Hence, for large enough values of n we have

E(X)≈ n/e
This means that on average about one third of the bins will be empty. �
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Fact 2.5 If X and Y are independent, then, for any function g and h,

E
[
g(X)h(Y )

]
= E

[
g(X)

]
E
[
h(Y )

]
Proof.

E
(
g(X)h(Y )

)
=

∑
x

∑
y
g(x)h(y)pX,Y (x,y)

=
∑
x

∑
y
g(x)h(y)pX (x)pY (y)

=
∑
x
g(x)pX (x)

∑
y
h(y)pY (y)

= E
[
g(X)

]
E
[
h(Y )

]
Fact 2.6 — E(XY ) =E(X)E(Y ) when X,Y are independent. This follows from the previous result
with

g(X) =X, h(Y ) = Y

2.6 Covariance
Covariance Let X and Y be random variables. Then

Cov(X,Y ) = E
[(
X−E(X)

)(
Y −E(Y )

)]
is defined to be the covariance of X and Y .

Fact 2.7 — Shortcut formula for covariance.

Cov(X,Y ) = E(XY )−E(X)E(Y )

Proof.

Cov(X,Y ) = E
[(
X−E(X)

)(
Y −E(Y )

)]
= E

[
XY −E(X)Y −XE(Y ) +E(X)E(Y )

]
= E(XY )−E(X)E(Y )−E(X)E(Y ) +E(X)E(Y )
= E(XY )−E(X)E(Y )

�

Fact 2.8 If X and Y are independent, then

Cov(X,Y ) = 0

However, the converse is not true.

Proof.

Cov(X,Y ) = E(XY )−E(X)E(Y )



82 Chapter 2. Random Variables

As X and Y are independent E(XY ) = E(X)E(Y ), so

Cov(X,Y ) = E(X)E(Y )−E(X)E(Y )
= 0

�

Uncorrelated random variables X and Y are said to uncorrelated if and only if

Cov(X,Y ) = 0

The units of covariance are the [units of X]× [units of Y ], which is problematic because we don’t
know how to interpret them. For this reason it is better to use the correlation coefficient:

(Pearson’s) correlation coefficient

ρX,Y = Cov(X,Y )
σXσY

It can be shown that
−1≤ ρX,Y ≤+1

ρ is unitless, therefore it can be used to compare across different ramp variables.

2.6.1 Interpretation of Covariance and Correlation
Let the following approximation of Cov(X,Y ) based on a sample {(x1,y1),(x2,y2), . . .(xn,yn)}:

Cov(X,Y ) = E
[(
X−µX

)(
Y −µY

)]
=
∑
x,y

(x−µX )(y−µY )pX,Y (x,y)

≈ 1
n

n∑
i=1

(xi−µX )(yi−µY )︸ ︷︷ ︸
ci

The term ci = (xi−µX )(yi−µY ) will be located in the positive or negative quadrant on the
following figure depending upon the sign of each term. If xi and yi are both greater or both less
than their means , then ci is positive. If one is positive and one is negative than ci is negative:
The following figures illustrate scatter plots for typical values for the correlation coefficient.
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STOP! Correlation does not necessarily mean causation. For example:
1. The yield of oranges and apples are highly correlated in the Monterey Valley. Therefore,

to produce more apples one should produce more oranges?
2. There is a high correlation between the number of police officers and the number of

crimes on a given city. Therefore, to reduce crime rates one should reduce the police
force?

3. → More examples from Wikipedia...
The use of a controlled experiment is the most effective way of establishing causality
between variables. In a controlled study, the sample or population is split in two, with
both groups being comparable in almost every way. The two groups then receive different
treatments, and the outcomes of each group are assessed.

2.6.2 Covariance of linear combinations
In this section we consider multiple random variables

X = (X1,X2, . . .Xn)T

which we call the random vector X, with means, variances and covariances (and correlations) given:

E(Xi) = µi

V(Xi) = σ2
i

Cov(Xi,Xj) = σij

= ρijσiσj

https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation#Examples_of_illogically_inferring_causation_from_correlation
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Covariance matrix The covariance matrix of the random vector X with vector mean µ = {µ1,µ2, . . .µn}
is the n×n matrix whose (i, j)th element is Cov(Xi,Xj):

ΣX = E
(
(X−µ)(X−µ)T

)
=


σ2

1 σ12 σ13 · · ·
σ21 σ2

2 σ23 · · ·
σ31 σ32 σ2

3 · · ·
... ... ... . . .


Its two main properties are:

1. it is symmetric since
Cov(Xi,Xj) = Cov(Xj ,Xi)

2. its diagonal elements give the variance, since

Cov(Xi,Xi) = σ2
i

Fact 2.9 — Covariance of linear combinations. Let the following linear combinations:

U =
n∑
i=1

aiXi = aTX

V =
n∑
j=1

bjXj = bTX

with a = (a1, . . . ,an)T and b = (b1, . . . , bn)T . Then,

Cov(U,V ) =
n∑
i=1

n∑
j=1

aibjσij

= aTΣXb

Proof. From the properties of the expectation we have that:

E(U) =
n∑
i=1

aiµi = aTµ, E(V ) =
n∑
j=1

bjµj = bTµ

therefore, by definition, the covariance of U and V is,

Cov(U,V ) = E
[(
U −E(U)

)(
V −E(V )

)]
= E

(
(aTX−aTµ)(bTX−bTµ)

)
= E

(
aT(X−µ)bT(X−µ)

)
= E

(
aT(X−µ)(X−µ)Tb

)
= aTE

(
X−µ)(X−µ)T

)
b

= aTΣXb
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Without matrix notation, the proof goes like this:

Cov(U,V ) = E
[(
U −E(U)

)(
V −E(V )

)]

= E


 n∑
i=1

aiXi−
n∑
i=1

aiµi


 m∑
j=1

biXj−
m∑
j=1

bjµj




= E

 n∑
i=1

ai (Xi−µi)
m∑
j=1

bj
(
Xj−µj

)
= E

 n∑
i=1

m∑
j=1

aibj (Xi−µi)
(
Xj−µj

)
=

n∑
i=1

m∑
j=1

aibj Cov(Xi,Xj)

�

Important corollaries of theorem 2.9:
Variance of linear combination

V
(
aTX

)
= aTΣXa

or in standard notation:

V
 n∑
i=1

aiXi

=
n∑
i=1

a2
iσ

2
i + 2

n∑
i=1

n∑
j=i+1

aiajσi,j︸ ︷︷ ︸
0 if Xi’s are independent

(2.1)

This formula illustrates the concept of propagation of errors, where the errors (variances and
covariances) in the Xi’s produce errors in the function U =

n∑
i=1

aiXi.

Proof. Let U =
n∑
i=1

aiXi

V(U) = Cov(U,U) (by definition)

=
n∑
i=1

n∑
j=1

aiaj Cov
(
Xi,Xj

)
(theorem 2.9)

=
n∑
i=1

a2
i V(Xi) +

n∑
i=1

n∑
j 6=i

aiaj Cov(Xi,Xj) (i= j terms first)

=
n∑
i=1

a2
i V(Xi) + 2

n∑
i=1

n∑
j=i+1

aiaj Cov(Xi,Xj) (symmetry of ΣX)

�
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Important results for two random variables:

V(X+Y ) = V(X) + V(Y ) + 2Cov(X,Y )
V(X−Y ) = V(X) + V(Y )−2Cov(X,Y )

Cov(aX+ b,cY +d) = ac Cov(X,Y )
ρ
aX+b,cY+d = ρX,Y

Example 103. The random variables X and Y have joint probability distribution specified by
the following table:

y=1 y=2 y=3
x=1 0.30 0.05 0.00
x=2 0.05 0.20 0.05
x=3 0.00 0.05 0.30

(a) Find the expectation of XY .
(b) Find the covariance Cov(X,Y ) between X and Y .
(c) What is the correlation between X and Y ?
(d) Suppose the random variables X and Y above are connected to random variables U and V
by the relations

X = 2U + 5
Y = 4V + 5

What is the covariance Cov(U,V )?
(e) What is the correlation between U and V ?

Solution: Part a) The mass function of XY is tabulated below:

xy 1 2 3 4 6 9
P (XY = xy) 0.3 0.1 0.0 0.2 0.1 0.3

Therefore

E (XY ) = 0.3 + 0.2 + 0 + 0.8 + 0.6 + 2.7 = 4.6

Part b)
We require E (X) ,E (Y ) ,V (X) , and V (Y ); these are as follows
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E (X) = 0.35 + 0.6 + 1.05
= 2.0
= E (Y ) ,

E
(
X2
)

= 0.35 + 22×0.3 + 32×0.35
= 4.7
= E

(
Y 2
)
,

Var(X) = 4.7−22

= 0.7
= Var(Y ) .

Hence

Cov (X,Y ) = E (XY )−E (X)E (Y )
= 4.6−4
= 0.6

Part c) For the correlation we require

ρ(X,Y ) = Cov (X,Y )√
Var(X)Var(Y )

= 0.6√
0.72

= 6
7

Part d)

U =X/2−5/2
V = Y/4−5/4

Since Cov(aX+ b,cY +d) = ac Cov(X,Y ) and so Cov(U,V ) = Cov(X,Y )/(2 ·4) = 0.6/(2 ·4).
Part e) The correlation between U and V can be written

ρU,V = Cov(U,V )√
V(U)

√
V(V )

= Cov(X,Y )/(2 ·4)√
(V(X)/22)(V(V )/42)

= ρX,Y

= 6
7

�
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Example 104. — 2 Dice There is a blue and yellow dice. Compute the correlation between X,
the number on the blue dice, and S, the total of the two dice.

Solution:
Write

S =X+Y

where Y is the number on the yellow dice. Here n= 2, a1 = 1, a2 = 0, and b1 = 1, b2 = 1. Therefore,

Cov(X,S) = Cov(X,X+Y )
= Cov(X,X) + Cov(X,Y )
= V(X) + 0

Also,

V(S) = V(X+Y ) = V(X) + V(Y )

But V(Y ) = V(X). So the correlation between X and S is

ρX,S = V(X)√
V(X)

√
2V(X)

= 0.707

Since correlation is at most 1 in absolute value, 0.707 is considered a fairly high correlation. Of
course, we did expect X and S to be highly correlated.
What is surprising, though, is that the correlation here is independent of the actual variance of X
and Y. So, for instance, if these are unfair dice, but with identical weightings, we still would get a
correlation of 0.707. �

Example 105. Find the covariance matrix of {U,V } where

U =X1 +X2

and
V =X1−X2

Solution: Recall from Fact 2.9:

Cov(U,V ) = aTΣXb

=
n∑
i=1

n∑
j=1

aibjσij

Here n= 2, a1 = 1, a2 = 1 and b1 = 1, b2 =−1. Therefore,

Cov(U,V ) = Cov(X1,X1)−Cov(X1,X2) + Cov(X2,X1) + Cov(X2,X2)
= Cov(X1,X1)−Cov(X2,X2)
= σ2

1 +σ2
2

Also,

V(U) = σ2
1 +σ2

2 + 2σ12

V(V ) = σ2
1 +σ2

2−2σ12
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and so the covariance matrix is:(
σ2

1 +σ2
2 + 2σ12 σ2

1 +σ2
2

σ2
1 +σ2

2 σ2
1 +σ2

2−2σ12

)

�

Example 106. *
The joint PMF of precipitation, X(in.) and runoff, Y (cfs) (discretized here for simplicity) due
to storms at a given location is as follows:

X=1 X=2 X=3
Y=10 0.0 0.25 0.10
Y=20 0.10 0.0 0.10
Y=30 0.05 0.15 0.25

(a) What is the probability that the next storm will bring a precipitation of 2 in. and a runoff of
more than 20 cfs?
(b) After a storm, the rain gauge indicates a precipitation of 2 in. What is the probability that
the runoff in this storm in 20 cfs or more?
(c) Are X and Y statistically independent? Substantiate your answer.
(d) Determine and plot the marginal PMF of runoff.
(e) Determine and plot the PMF of runoff for a storm whose participation is 2 in.
(f) Determine the correlation coefficient between precipitation and runoff.

Solution: Answer: (a) 0.15 (b) 0.375 (c) Not independent (f) 0.1103

(a)

P (X = 2,Y > 20) = P (X = 2,Y = 30)
= 0.15

(b)

P (Y ≥ 20|X = 2) = P (X = 2,Y = 20) +P (X = 2,Y = 30)
P (X = 2)

= 0 + 0.15
0.25 + 0 + 0.15

= 0.375

(c)

P (X = 1) = 0 + 0.1 + 0.05
= 0.15

P (Y = 10) = 0 + 0.25 + 0.1
= 0.35

P (X = 1,Y = 10) = 0
6= P (X = 1) ·P (Y = 10)
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So they are not independent.
(d)

P (Y = 10) = 0 + 0.25 + 0.1
= 0.35

P (Y = 20) = 0.1 + 0 + 0.1
= 0.2

P (Y = 30) = 0.05 + 0.15 + 0.25
= 0.45

(e)

P (Y = 10|X = 2) = 0.25
0.25 + 0 + 0.15

= 0.625

P (Y = 20|X = 2) = 0
0.25 + 0 + 0.15

= 0

P (Y = 30|X = 2) = 0.15
0.25 + 0 + 0.15

= 0.375

(f)

E(X) = 0.15×1 + 0.4×2 + 0.45×3
= 2.3

E(Y ) = 0.35×10 + 0.2×20 + 0.45×30
= 21

E(X2) = 0.15×12 + 0.4×22 + 0.45×32

= 5.8
E(Y 2) = 0.35×102 + 0.2×202 + 0.45×302

= 520
E(XY ) = 0×10 + 0.25×20 + 0.10×30 + 0.1×20 + 0×40 + 0.1×60 + 0.05×30 + 0.15×60 + 0.25×90

= 49

ρ = Cov(X,Y )
σXσY

= E(XY )−E(X)E(Y )√
E(X2)−E(X)2

√
E(Y 2)−E(Y )2

= 49−2.3×21√
5.8−2.32

√
520−212

= 0.1103

�
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Example 107. — speeding tickets** A study investigates a group of people who have received
speeding tickets in the past year. The joint PMF is summarized in the following table. Let X
be the number of tickets received by a person in the past year and Y be the age of that person.

X=1 X=2
Y=30 c c + 1/8
Y=40 c c - 1/8

(a) Determine the value of c. (5 points)
(b) Determine the marginal PMF of X, and the conditional PMF of X. (10 points)
(c) If someone is 30 years old, find the probability that this person gets exact one ticket. (5
points)
(d) Are X and Y statistically independent? Substantiate your answer. (5 points)
(e) Determine the correlation coefficient between X and Y . (10 points)

Solution: (a)

1 = c+ (c+ 1
8) + c+ (c− 1

8)
c = 0.25

(b) Marginal:

pX=1 = c+ c

= 0.5
pX=2 = (c+ 1

8) + (c− 1
8)

= 0.5

Conditional:

pX=1|Y=30 = c

c+ (c+ 1
8)

= 0.4

pX=2|Y=30 =
c+ 1

8
c+ (c+ 1

8)
= 0.6

pX=1|Y=40 = c

c+ (c− 1
8)

= 0.67

pX=2|Y=40 =
c− 1

8)
c+ (c− 1

8)
= 0.33

(c)

pX=1|Y=30 = c

c+ (c+ 1
8)

= 0.4
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(d) Not independent. Because pX=1|Y=30 6= pX=1

(e)

E(X) = 1.5

E(Y ) = 270
8

E(X2) = 2.5
E(Y 2) = 1162.5

E(XY ) = c×1×30 + c×1×40 + (c+ 1
8)×2×30 + (c− 1

8)×2×40
= 50

ρ = Cov(X,Y )
σXσY

= E(XY )−E(X)E(Y )√
E(X2)−E2(X)

√
E(Y 2)−E2(Y )

= −0.258

�

Example 108. * Given the joint distribution of (X,Y ):

X
pX,Y (x,y) -1 0 1 Σ

-1 1/16 3/16 1/16 5/16
Y 0 3/16 0 3/16 3/8

1 1/16 3/16 1/16 5/16
Σ 5/16 3/8 5/16 1

Calculate the covariance of X and Y . Are they statistically independent?

Solution: The covariance is zero but since pX,Y (0,0) 6= pX (0) ·pY (0), X and Y are not independent.
�

Example 109. — Tornadoes, take 2 100 structures are located in a region where tornado wind
force must be considered in its design. Suppose that from the records of tornadoes for the past
200 years, it is estimated that (i) during any given year the probability of having 0, 1 and 2
tornadoes is 0.5, 0.3 and 0.2, respectively, (ii) the number of tornadoes in different years are
independent, and (iii) if a tornado occurs, a structure will be damaged with probability p=5%.

a) if two tornadoes occurred last year, how many structures do you expect to have been
damaged?

b) what is the probability the a structure will be damaged in the next five years?
c) calculate the mean and variance of the number of structures damaged in the next five years?

d) If you’re a contractor in charge of rehabilitating the structures in the region after a tornado
damage, compute the mean and variance of your yearly income, U , if you charge c dollars
per rehabilitation work.

e) calculate the coefficient of variation of your yearly income, and comment.
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Solution: Let
X = number of tornadoes on a given year, SX = {0,1,2} tornadoes.
Yi number of times structure i= 1,2, . . .100 is damaged due to tornadoes on a given year.
The event (Yi > 0|X = x) is similar to obtaining at least one Head out of x tosses of a coin with
P(Head) = p, therefore:

P(Yi > 0|X = x) = 1− (1−p)x

a) If two tornadoes occurred last year, how many structures do you expect to have been damaged?

Let Z = number of structures damaged last year. Let

Zi =
{

1 if structure i was damaged last years
0 otherwise

We are interested in the expected value of Z =∑100
i=1Zi. By linearity of expectation we get

E(Z) =
100∑
i=1

E(Zi) =
100∑
i=1

P(Zi = 1) =
100∑
i=1

P(Yi > 0|X=2) = 100(1− (1−p)2) = 9.75

→ 10 structure.
b) what is the probability the a structure will be damaged in the next five years?

Since the number of tornadoes are independent from year to year, we can focus on a single
year, calculate the probability of D = damage in one year for one structure, and then
“ flip a coin” five times with

P(D) = P(Yi > 0) = 1−P(Yi = 0)

Since we don’t know the number of tornadoes that will occur, we use the total prob. rule:

P(Yi = 0) =
2∑

x=0
P(Y = 0|X = x)P(X = x)

=
2∑

x=0
(1−p)xP(X = x)

= (1−p)0P(X = 0) + (1−p)1P(X = 1) + (1−p)2P(X = 2)
=
(
(1)(0.5)

)
+
(
(0.95)(0.3)

)
+
(
(0.952)(0.2)

)
= 0.9655

then P(D) = 1−0.9655 = 0.0345 for one year. The desired probability is 1−(1−P(D))5 = 0.16.
c) calculate the mean and variance of the number of structures damaged in the next five years?

Let

Zi =
{

1 if structure i is damaged in five years
0 otherwise

Thus, P(Zi = 1) = 0.16 and E(Zi) = 0.16, V(Zi) = 0.16(1−0.16) = 0.13. We are interested in

Z =
100∑
i=1

Zi
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By linearity of expectation we get

E(Z) =
100∑
i=1

E(Zi) =
100∑
i=1

0.16 = 16

and by result (2.1) for the variance of a sum we have,

V(Z) =
100∑
i=1

V(Zi) =
100∑
i=1

0.13 = 13

d) If you’re a contractor in charge of rehabilitating the structures in the region after a tornado
damage, compute the mean and variance of your yearly income, U , if you charge c dollars per
rehabilitation work.

Let Yi be the number of times structure i is damaged due to tornadoes on a given year.
We are interested in U =∑100

i=1 cYi. By linearity of expectation we get

E(U) =
100∑
i=1

cE(Yi) = 100cE(Yi)

and by result (2.1) for the variance of a sum we have,

V(U) =
100∑
i=1

c2V(Yi) = 100c2V(Yi)

To compute the mean and variance of Yi we need its PMF. From the problem statement we
have pX , and we can determine p

Yi|X
as we did on part a), and then we use the multiplication

rule,

pX,Yi (x,y) = pX (x)p
Yi|X

(y).

marginal distribution of X :

x 0 1 2
pX (x) 0.5 0.3 0.2

conditional distribution of Yi|X : P(Yi = y|X = x) =
(
x
y

)
py(1−p)x−y :

y 0 1 2 Σ
p
Yi|X=0(y) 1 0 0 1
p
Yi|X=1(y) 1−p= 0.95 p= 0.05 0 1
p
Yi|X=2(y) (1−p)2 = 0.9025 2p(1−p) = 0.095 p2 = 0.0025 1

and we can calculate the joint distribution of (X,Yi):

Yi
pX,Yi (x,y) 0 1 2 Σ

0 0.5 0 0 0.5
X 1 0.285 0.015 0 0.3

2 0.1805 0.019 0.0005 0.2
Σ 0.9655 0.034 0.0005 1
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and finally we have the marginal distribution of Yi :
y 0 1 2

pY (y) 0.9655 0.034 0.0005

and we obtain E(Yi) = 0.035,V(Yi) = 0.0347. Therefore,

E(U) = 3.5c

V(U) = 3.47c2

e) δU = V(U)1/2 /E(U) = 0.53
Since this coefficient of variation is greater than 30 %, the yearly income has a large variability.

�

Example 110. — Stock Prices, simple portfolio Model Let
Xi = rate of return for stock i
µi = expected rate of return (historically 10% annually)
σi = price volatility (standard deviation of Xi, historically 15% monthly)

The value of a portfolio of the stocks

X = (X1,X2, . . .Xn)T

is:

U =
n∑
i=1

aiXi = aTX

E(U) =
n∑
i=1

aiµi = aTµ

where the ai’s represent the weight of each stock in the portfolio, with:

0≤ ai ≤ 1
n∑
i=1

ai = 1

The risk of the portfolio is given by its variance:

V(U) = aTΣXa (2.2)

=
n∑
i=1

a2
iσ

2
i + 2

n∑
i=1

n∑
j=i+1

aiajσi,j︸ ︷︷ ︸
0 if Xi’s are independent

(2.3)

where:

ΣX = E
(
(X−µ)(X−µ)T

)
=


σ2

1 σ12 σ13 · · ·
σ21 σ2

2 σ23 · · ·
σ31 σ32 σ2

3 · · ·
... ... ... . . .
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is the covariance matrix for the stock returns. The idea is to find that the weights ai that
minimizes the variance while maximizing the value of U .

Consider the following tech stocks weekly return data for 2016-2017:

stock µi σi δi
1 GOOGL 0.35 2.49 7.22
2 AAPL 0.53 3.12 5.85
3 FB 0.58 2.86 4.96
4 TWTR 0.32 7.01 21.86
5 TSLA 0.45 5.38 12.
6 MSFT 0.51 2.33 4.57
7 NFLX 0.66 5.26 7.93

0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4
μR

3 4 5 6 7 8
0

1

2

3

4
σR

5 10 15 20 25 30
0
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4

5
δR

0.35 0.40 0.45 0.50 0.55 0.60 0.65
μ0
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2

3

4

5

6

7

σ

0.35 0.40 0.45 0.50 0.55 0.60 0.65
μ

5
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15

20

δ

.

ΣX =
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1 2 3 4 5 6 7

1

2
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4

5

6

7

1 2 3 4 5 6 7

1

2

3

4

5

6

7

2

11

20

30

40

49

ΣX =

6.2 4. 4.1 6.5 4.6 4.6 6.5
4. 9.7 1.4 6.8 6.6 3.2 6.
4.1 1.4 8.2 1.2 4. 3.7 3.2
6.5 6.8 1.2 49.2 3.7 5.8 11.6
4.6 6.6 4. 3.7 28.9 3.9 9.5
4.6 3.2 3.7 5.8 3.9 5.4 5.1
6.5 6. 3.2 11.6 9.5 5.1 27.7

a) if your portfolio only has stocks from Netflix and Facebook, what are the weights that
minimize the variance?

b) what is the expected value, variance and coefficient of variation of the return of the portfolio
in part a)?

c) repeat a) and b) for Apple and Twitter?
d) which portfolio would you recommend buying, why?

Solution:
a) if your portfolio only has stocks from Netflix and Facebook, what are the weights that

minimize the variance?

V(U) = a2
3 V(X3) +a2

7 V(X7) + 2a3a7 Cov(X3,Y7)
= a2

3 ·8.2 + (1−a3)2 ·27.7 + 2a3(1−a3) ·3.2
= a3 (29.5186a3−48.9958) + 27.666

which is minimized at a∗3 = 0.83, which implies that a∗7 = 1−0.83 = 0.17.
b) what is the expected value, variance and coefficient of variation of the return of the portfolio

in part a)?
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Evaluating the respective formulas with weights a∗3 = 0.83 and a∗7 = 0.17 gives

0.59,2.7,4.6,

respectively.
c) repeat a) and b) for Apple and Twitter?

V(U) = a2 (45.2135a2−84.6517) + 49.1704

which is minimized at a∗2 = 0.94, which implies that a∗4 = 1−0.94 = 0.06.
The expected value, variance and coefficient of variation are

0.52,9.55,5.94,

resp.
d) which portfolio would you recommend buying, why?

�





3. Continuous Random Variables

A continuous random variable X takes values in an interval of the real line or all of the real line.
Therefore, FX (x) is continuous (with no jumps), which means that

P(X = x) = 0 for all x and P(X ≤ x) = P(X < x)

−3 −2 −1 0 1 2 30

0.2

0.4

0.6

x

PDF of a continuous rv: fX(x)

−3 −2 −1 0 1 2 30

0.2

0.4

0.6

0.8

1

x

CDF of a continuous rv: FX(x)

The CDF is still

FX (x) = P(X ≤ x) =
ˆ x

−∞
fX (z)dz

The derivative fX (x) = F ′
X

(x) is called probability density function (PDF).
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= FX(b)−FX(a)

ba X

P(a < x < b) =
´ b
a fX(z)dz

→ GeoGebra for interactive probability calculations for the most important distributions.

50 60 70 80 90

PDF

60 70 80 90

0.2

0.4

0.6

0.8

1.0

CDF

Note:
FX (x) =

ˆ x

−∞
fX (z)dz.

and ∞̂

−∞

fX (x)dx= 1

Hence any nonnegative function that integrates to one defines a cdf.

The PDF has units Unlike the PMF of a discrete random variable, the PDF has units:

units of fX (x) = (units of X)−1

This means that fX (x) it’s hard to interpret because it depends on the units of measurement.

https://www.geogebra.org/classic/probability
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The term fX (x)dx is meaningful because it represents a probability:

fX (x)dx≈ P(x < X < x+ dx) (3.1)

Expectation For a continuous random variable X the expectation is defined as

E(X) =
∞̂

−∞

xfX (x)dx

and for any real function g,

E
[
g(X)

]
=
∞̂

−∞

g(x)fX (x)dx

Variance The variance formulas are the same as before:

V(X) = E
[(
X−E(X)

)2]= E
[
X2
]
−E(X)2

but using the above definition of expectation.

Example 111. Let X be a continuous variable whose probability density function is

fX (x) =
cx ; 0< x < 1

0 ; otherwise

a) Find c.
b) Find E(X).

Solution:
a) Find c.

1 =
ˆ ∞
−∞

fX (x)dx

= c

ˆ 1

0
x dx= c/2

We get c= 2

b) Find E(X).

E(X) =
∞̂

−∞

xfX (x)dx

=
1ˆ

0

2x2 dx= 2
3

�
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Example 112. — * The PDF of the random variable X is,

fX (x) =
k(1−x2 + 1

2x
3), 0< x≤ 2

0, otherwise

where k is a constant.

(a) Determine the value of k
(b) Determine the mean value, variance and coefficient of variation of X
(c) Determine P(0.3<X<0.9 | X>0.6)

Solution:
Answer: (a) k = 3

4 (b) 0.9, 0.39, 0.69 (c) 0.247
(a)

1 =
ˆ ∞
−∞

fX (x)dx

=
ˆ 2

0
k(1−x2 + 1

2x
3)dx

We get k = 3
4

(b) Mean

E(X) =
ˆ ∞
−∞

xfX (x)dx

=
ˆ 2

0
kx(1−x2 + 1

2x
3)dx

=
ˆ 2

0

3
4x(1−x2 + 1

2x
3)dx

= 0.9

Variance

E(X2) =
ˆ ∞
−∞

x2fX (x)dx

=
ˆ 2

0
kx2(1−x2 + 1

2x
3)dx

=
ˆ 2

0

3
4x

2(1−x2 + 1
2x

3)dx

= 1.2

V (X) = E(X2)− [E(X)]2

= 1.2−0.92

= 0.39
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Coefficient of Variation

δX =

√
V (X)
E(X)

= 0.69
(c)

P (0.3< X< 0.9|X> 0.6) = P (0.6< X< 0.9)
P (X> 0.6)

=
´ 0.9

0.6 fX (x)dx´∞
0.6 fX (x)dx

= 0.554−0.408
1−0.408

= 0.247
�

Example 113. Let X be a continuous variable whose probability density function is

fX (x) =
c
(
4x−2x2

)
; 0< x < 2

0 ; otherwise

a) Find c.
b) Find P(X > 1).

Solution:
1. As fX (x) is a probability density function,

1 =
∞̂

−∞

fX (x)dx

=
2ˆ

0

c
(
4x2−2x2

)
dx

= 8c
3

Therefore,

c= 3
8

2.

P(X > 1) =
∞̂

1

fX (x)dx

=
2ˆ

1

3
8
(
4x−2x2

)
dx

= 1
2
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�

Example 114. — Cauchy distribution Let X be a continuous variable whose probability density
function is

fX (x) = c

1 +x2 −∞< x <∞

a) Find c.
b) Find FX (x).
c) Find V(X).

Solution:
a) As fX (x) is a probability density function,

1 =
∞̂

−∞

fX (x)dx

= c

∞̂

−∞

1
1 +x2 dx

= cπ

Therefore,

c= 1
π

b) FX (x) =
´ x
−∞

1
π(y2+1) dy = π

(
tan−1(x) + π

2
)

c) E(X) =
´∞
−∞x · 1

π(x2+1) dx does not converge, and nor does E
(
X2
)
, or the variance V(X): the

Cauchy distribution is said to be “pathological”.
�

Example 115. — Exponential distribution. The amount of time in hours that a computer functions
before breaking down has the distribution

fX (x) =
λe−

x
100 ; x≥ 0

0 ; otherwise

What is the probability that the computer functions for more than 50 but less than 150 hours?

Solution:

1 =
∞̂

−∞

fX (x)dx

= λ

∞̂

0

e−
x

100 dx

= 100λ
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Therefore,

λ= 1
100

Therefore,

P(50< x < 150) =
150ˆ

50

λe−
x

100 dx

=
150ˆ

50

1
100e

− x
100 dx

≈ 0.384

�

Example 116. — Uniform distribution. The probability density function of X is given by the
Uniform distribution in (0, 1):

fX (x) =
1 ; 0≤ x≤ 1

0 ; otherwise

Find E
[
eX
]
.

Solution:

E
[
eX
]

=
∞̂

−∞

exfX (x)dx

=
1ˆ

0

exdx

= e−1

�

3.1 Joint Continuous Variables
We already covered the theory of jointly distributed random variables in chapter 2 for the discrete
case. Here we simply Use probability density instead of probability mass function, but the equations
are identical. The only difference is that we use integrals and not summations.

Joint CDF and PDF X and Y are said to be jointly continuous if there exists a function
fX,Y (x,y) defined for all real x and y, such that

FX,Y (x,y) = P(−∞≤X ≤ x,−∞≤ Y ≤ y)

=
yˆ

−∞

xˆ

−∞

fX,Y (a,b)dadb
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Therefore: fX,Y (x,y) = ∂2

∂x∂yF (x,y).
Note:

∞̂

−∞

∞̂

−∞

fX,Y (x,y)dxdy = 1

Probability of events. An event C is any subset (area or region) of the X−Y plane, and

P
(
(X,Y ) ∈ C)=

¨

(x,y)∈C

fX,Y (x,y)dxdy (3.2)

Marginal PDF The PDF of a single random variable is called marginal PDF:

fX (x) =
∞̂

y=−∞

fX,Y (x,y)dy and fY (y) =
∞̂

x=−∞

fX,Y (x,y)dx

Conditional probability density functions For two continuous random variables X and Y :

f
X|Y (x|y) =

fX,Y (x,y)
fY (y)

and the cumulative distribution function is

FX|Y (x) =
xˆ

−∞

f
X|Y (x)dx

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.2

0.4

fX(x) fY (y)

X Y

0

5 ·10−2

0.1

0.15

fX,Y (x,y)
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Independence If X and Y are continuous, then

fX,Y (x,y) = fX (x)fY (y)

for all (x,y), if and only if X and Y are independent.

Expectation

E
(
g(X,Y )

)
=
∞̂

−∞

∞̂

−∞

g(x,y)fX,Y (x,y)dxdy

E
(
g(X,Y ) | Y = y

)
=
∞̂

−∞

g(x,y)f
X|Y (x)dx

Notice that:

E[Y ] =
∞̂

−∞

∞̂

−∞

y fX,Y (x,y)dxdy

=
∞̂

−∞

y


∞̂

−∞

fX,Y (x,y)dx

dy

=
∞̂

−∞

yfY (y)dy

Covariance The formula for covariance is identical to the discrete case,

Cov(X,Y ) = E
[(
X−E(X)

)(
Y −E(Y )

)]
= E(XY )−E(X)E(Y )

but using the definition of expectation above.

Example 117. — * Two friends meet? Two friends try to meet at a certain place between 5 pm
and 6 pm. Each person arrives at a time uniformly distributed in the time - interval independently
of each other and stays for 20 minutes.

Find the probability that they meet.

Solution: We have:

X ∼ U(0,60)
Y ∼ U(0,60)
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with the Uniform distribution in (0, 60):

fX (x) =
1/60 ; 0≤ x≤ 60

0 ; otherwise

and therefore by independence

fX,Y (x,y) = fX (x)fY (y)

=
1/602 ; 0≤ x,y ≤ 60

0 ; otherwise

in this particular case.
The event of interest C is |X−Y | ≤ 20. From the
figure we can see that

P
(
(X,Y ) ∈ C)=

¨

(x,y)∈C

fX,Y (x,y)dxdy

=
¨

(x,y)∈C

1
602 dxdy

= area of C/602

= 0.55

Notice that the above integral is proportional to
the area of C only because fX,Y (x,y) is constant
in this particular case; this is not true in general.

|X-Y| < 20

0 10 20 30 40 50 60
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20

30

40

50

60

X

Y

�

Example 118. Let

X ∼ U(0,1)
Y ∼ U(0,1)

Calculate the probability density function of X+Y

Solution: Let’s compute the CDF of X+Y and then take derivatives to obtain the PDF. For the
CDF, the event of interest C is X+Y ≤ t. From the graphical representation of this event in the
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X-Y plane we can see that

FX+Y (t) = P(X+Y ≤ t)

=
¨

(x,y)∈C

fX,Y (x,y)dxdy but fX,Y (x,y) = 1, and from the figure seen in class:

=


t2

2 ; 0≤ t≤ 1
1− (2−t)2

2 ; 1≤ t≤ 2
0 ; otherwise

Therefore, taking derivatives

fX+Y (t) =


t ; 0≤ t≤ 1
2− t ; 1< t < 2
0 ; otherwise

�

Example 119. — * An accident occurs at a point X that is uniformly distributed on a road of
length L. At the time of the accident, and ambulance is at a location Y that is also uniformly
distributed on the same road.
Assuming that X and Y are independent, find the expected distance |X−Y | between the point
of occurrence of the accident, and the position of the ambulance.

Solution:

fX (x) =


1
L ; 0< x < L

0 ; otherwise

fY (y) =


1
L ; 0< y < L

0 ; otherwise

As the variables are independent,

fX,Y (x,y) = fX (x)fY (y)

=


1
L2 ; 0< x < L,0< y < L

0 ; otherwise
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Therefore,

E
[|X−Y |]= 1

L2

L̂

0

L̂

0

|x−y|dydx

= 1
L2

L̂

0


xˆ

0

(x−y)dy+
L̂

x

(y−x)dy

dx

= 1
L2

L̂

0

L2

2 +x2−xL
dx

= L

3
�

This example shows how random variables can have a Cov(X,Y ) = 0 but still be dependent:

Example 120. Find Cov(X,Y ) for Y =X2 where X has a Triangular Distribution in (-1,1).

Solution: Let

X ∼ Triang(−1,1)
Y =X2

with

fX (x) =


1 +x −1≤ x≤ 0
1−x 0< x≤ 1
0 otherwise

X

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

X
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Therefore,

E(X) = 0

E(Y ) = E
(
X2
)

=
1ˆ

−1

x2fX (x)dx=
0ˆ

−1

x2(1 +x)dx+
1ˆ

0

x2(1−x)dx

=
0ˆ

−1

x2 dx+
1ˆ

0

x2 dx= 2/3

E(XY ) = E
(
X3
)

=
1ˆ

−1

x3fX (x)dx=
0ˆ

−1

x3(1 +x)dx+
1ˆ

0

x3(1−x)dx

=
0ˆ

−1

x3 dx+
1ˆ

0

x3 dx= 0

Therefore, Cov(X,Y ) = 0 - 0 = 0 �

Example 121. The joint density function of X and Y is given by

fX,Y (x,y) =
2e−xe−2y ; 0< x <∞,0< y <∞

0 ; otherwise

Compute
1. P(X > 1,Y < 1)
2. P(X < Y )
3. P(X < a)

Solution:
1.

P(X > 1,Y < 1) =
1ˆ

−∞

∞̂

1

fX,Y (x,y)dxdy

=
1ˆ

0

∞̂

1

2e−xe−2y dxdy

=
1ˆ

0

2e−2y −e−x
∣∣∣x=∞
x=1

dy

= e−1
1ˆ

0

2e−2y dy

= e−1
(
1− e−2

)
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2.

P(X < Y ) =
¨

(x,y):x<y

fX,Y (x,y)dxdy

=
¨

(x,y):x<y

2e−xe−2y dxdy

=
∞̂

0

yˆ

0

2e−xe−2y dxdy

=
∞̂

0

2e−2y
(
1− e−y

)
dy

=
∞̂

0

2e−2y dy−
∞̂

0

2e−3y dy

= 1− 2
3

= 1
3

3.

P(X < a) =
aˆ

−∞

∞̂

−∞

fX,Y (x,y)dydx

=
aˆ

0

∞̂

0

2e−2ye−xdydx

=
aˆ

0

e−xdx

= 1− e−a

�

Example 122. Consider the bivariate density function

f(x,y) = 12
7 (x2 +xy), 0≤ x,y ≤ 1.

Find the probability that X > Y .

Solution: The desired probability can be found by integrating f over the region A= {(x,y)|0≤
y ≤ x≤ 1}. Note that A is not a rectangle, so we use (??):

P (X > Y ) = 12
7

ˆ 1

0

ˆ x

0
(x2 +xy) dy dx= 9

14 .

�
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Example 123. — * The joint density function of X and Y is given by

fX,Y (x,y) =
e−(x+y) ; 0< x <∞,0< y <∞

0 ; otherwise

a) Are X and Y independent? Explain why.
b) Find the density function of the random variable Z =X/Y .
c) Find the expected value of the function g(X,Y ) =XY . Hint:

´
xe−x =−(x+ 1)e−x.

Solution:
a) Are X and Y independent? Explain why. Yes because the joint distribution is the product of

the marginals:

fX,Y (x,y) = fX (x)fY (y)

fX (x) =
∞̂

0

e−(x+y)dy = e−x
∞̂

0

e−ydy = e−x

So indeed,

e−(x+y) = e−xe−y

b) Find the density function of the random variable Z =X/Y .

FX
Y

(a) = P
(
X

Y
≤ a

)

=
¨

(x,y):xy≤a

fX,Y (x,y)dxdy

=
¨

(x,y):xy≤a

e−(x+y) dxdy

=
∞̂

0

ayˆ

0

e−(x+y) dxdy

=
∞̂

0

(
1− e−ay

)
e−y dy

= −e−y + e−(a+1)y

a+ 1

∣∣∣∣∣∣
∞

0
= 1− 1

a+ 1

Therefore,

fX
Y

(a) =
dFX

Y
(a)

da
= 1

(a+ 1)2
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c) Find the expected value of the function g(X,Y ) =XY . Hint:
´
xe−x =−(x+ 1)e−x.

Since X,Y are independent:

E(XY ) = E(X)E(Y ) = 1×1

�

Example 124. — * Two random variables X and Y have the following joint PDF:

fX,Y (x,y) =
kx ; 0< x < 1,0< y < x

0 ; otherwise

Determine:
(a) the value of k
(b) the conditional and marginal PDF of X
(c) the conditional and marginal PDF of Y
(d) the standard deviation of X
(e) the standard deviation of Y
(f) the correlation coefficient between X and Y
(g) the mean and variance of the function g(X,Y ) =|X−Y |

Solution: Answer: (a) 3 (d) 0.193 (e) 0.244 (f) 0.397 (g) 0.375, 0.0594

(a) ¨
kxdxdy = 1

We get k = 3

(b) Marginal PDF of X:ˆ x

0
3xdy = 3x2,0< x < 1

Marginal PDF of Y :
ˆ 1

y

3xdx= 3
2(1−y2),0< y < 1

(c) Conditional PDF of X:

f
X|Y = 3x

3
2(1−y2)

= 2x
1−y2 ,0< x < 1

Conditional PDF of Y:

f
Y |X = 3x

3x2

= 1
x
,0< y < 1
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(d)

E(X) =
ˆ 1

0
x ·3x2dx

= 3
4

E(X2) =
ˆ 1

0
x2 ·3x2dx

= 3
5

σX =
√
E(X2)−E2(X)

= 0.193

(e)

E(Y ) =
ˆ 1

0
y(1−y2)dy

= 3
8

E(Y 2) =
ˆ 1

0
y2(1−y2)dy

= 1
5

σY =
√
E(Y 2)−E2(Y )

= 0.244

(f)

E(XY ) =
¨

xy ·3xdxdy

= 3
10

ρ = Cov(X,Y )
σXσY

= E(XY )−E(X)E(Y )
σXσY

= 0.397
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(g) Because 0< y < x, |X−Y |= x−y

E[|X−Y |] = E(X−Y )

= 3
8

E[|X−Y |2] = E[(X−Y )2]

= 1
5

V [|X−Y |] = E[|X−Y |2]−E2[|X−Y |]
= 19

320
= 0.0594

�

Example 125.

fX,Y (x,y) =


e
−xy e−y

y ; 0< x <∞,0< y <∞
0 ; otherwise

Find P(X > 1|Y = y).

Solution:

f
X|Y (x) =

fX,Y (x,y)
fY (y)

=
e
−xy e−y

y

e−y
∞́

0

(
1
y

)
e−

x
y dx

= e−
x
y

y

Therefore,

P(X > 1|Y = y) =
∞̂

1

1
y
e−

x
y dx

= e−
1
y

�

3.1.1 Exercises
1. Let the rv’s X and Y have the joint pdf given below: f(x,y)=kxy2, for 0≤ x≤ 2, x≤ y ≤ 3.

2. Find the constant k.
3. Find the marginal pdf’s of X and Y .
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4. Are X and Y independent?
Let the rv’s X and Y have the joint pdf given below:

f(x,y) =
{

2e−x−y 0≤ x≤ y <∞
0 otherwise

1. Find P (X+Y ≤ 3).
2. Find the marginal pdf’s of Y and X.
3. Are X and Y independent? Justify your answer.

Let X be the force applied to a randomly selected beam, and Y the time to failure of the beam. Suppose
that X is uniformly distributed between 500 and 600 pounds. Suppose also that the conditional pdf
of Y given that a force X = x is applied is zero for negative y and fY |X=x(y) = λ(x)e−λ(x)y, for y >
0,whereλ(x) = 0.02x−9.999.
Find the joint distribution of (X,Y ).
Find the expected time to failure of a randomly selected beam when the force applied is X = 580. (Hint:
Use the formula for the mean value of an exponential random variable.)
A type of steel has microscopic defects which are classified on continuous scale from 0 to 1, with 0 the
least sever and 1 the most sever. This is called the defect index. Let X and Y be the static force at failure
and the defect index for a particular type of structural member made of this steel. For a member selected
at random, these are jointly distributed random variables with joint pdf

f(x,y) =
{

24x if 0≤ y ≤ 1−2x and 0≤ x≤ .5
0 otherwise

1. Draw the support of this pdf, i.e. the region of (x,y) values where f(x,y)> 0.
2. Are X and Y independent? Answer this question without first computing the marginal pdfs of X

and Y . Justify your answer.
3. Find each of the following: fX , fY , E(X), and E(Y ).
4. Find the conditional pdf of Y given X = x.
5. Use the conditional pdf found above to calculate E(Y |X = 0.3).

John and his trainer Yvonne have agreed to meet between 6 A.M. and 8 A.M. for a workout but will aim
for 6 A.M. Let X = # of hours that John is late, and Y = # of hours that Yvonne is late. Suppose that
the joint distribution of X and Y is

f(x,y) =
{

1
4 0≤ x≤ 2,0≤ y ≤ 2
0 elsewhere

1. Determine the marginal probability density function of X. Do the same for Y . [If you can, guess the
marginal pdf of Y without any additional calculations.]

2. Compute E(X) and Var(X). Do the same for Y . [If you can, guess the E(Y ) and Var(Y ) without
any additional calculations.]

3. Are X and Y independent? Justify your answer.





4. Special Distributions

4.1 Uniform Random Variable
Uniform Random Variable over the interval

(a,b) denoted as X ∼ U(a,b)

fX (x) =


1
b−a ; a < x < b

0 ; otherwise

FX(x) =


0 ; x < a
x−a
b−a ; a≤ x≤ b
1 ; b < x

E[X] = a+ b

2

V(X) = (b−a)2

12

1 2 3 4 5
X

0.5

1.0

1.5

2.0

2.5

PDF

a=1, b=1.4 a=1, b=2 a=1, b=4
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X
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0.6

0.8
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CDF

Example 126. Let

X ∼ U(a,b)
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Show that

E[X] = a+ b

2
Solution:

E[X] =
∞̂

−∞

xf(x)dx

=
bˆ
a

x
1

b−a dx= b2−a2

2(b−a)

= a+ b

2
�

Example 127. Let

X ∼ U(a,b)

Show that

V(X) = (b−a)2

12

Solution:

E
[
X2
]

=
∞̂

−∞

x2f (x)dx=
bˆ
a

x2 1
b−a dx= b3−a3

3(b−a)

= a2 +ab+ b2

3
Therefore,

V(X) = E
[
X2
]
−E[X]2

= a2 +ab+ b2

3 −
(
a+ b

2

)2

= (b−a)2

12
�

4.2 Normal Distribution
The normal distribution is arguably the most important distribution in statistics. It arises in nature
all the time due to the Central Limit Theorem. For instance, the CLT implies that the average
of random variables

U =
n∑
i=1

Xi
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tends to the normal distribution regardless of the distribution of the Xi’s, as illustrated in the
following figure.
The figure below shows the agreement of the CLT for the PDF of U = 1

n

n∑
i=1

Xi where the Xi ∼ fX .
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It can be seen that regardless of the initial distribution fX that CLT provides a good approximation
for n > 5.

Normal Random Variable (akaGaussian rv) A random
variable X is said to be a normal random variable,

X ∼N(µ,σ2)

if its probability density function is

fX (x) = 1√
2πσ

e
− (x−µ)2

2σ2 (4.1)

where µ and σ2 are parameters, and

E(X) = µ

V(X) = σ2

The CDF of a normal rv :

FX (x) =
xˆ

−∞

1√
2πσ

e
− (a−µ)2

2σ2 da

does not have an analytical solution and has to be ap-
proximated numerically.

-6 -4 -2 2 4 6
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−6 −4 −2 0 2 4 6 8

0

0.1

0.2

0.3

0.4

µ= 0,σ2 = 1

µ= 0,σ2 = 2

µ=−2,
σ2 = 1

X ∼N(µ,σ2)

x

STOP! The parameter µ indicates the “location”, and the parameter σ is a “scale”
parameter, determining how far it reaches from left to right.

Standard Normal Random Variable A random variable Z is said to be a standard normal
random variable if µ= 0 and σ2 = 1: Z ∼N(0,1)

fZ(z) = 1√
2π
e−z

2/2

By convention, the standard normal CDF is denoted Φ(z) and not FZ :

Φ(z) = P(Z ≤ z)

=
zˆ

−∞

1√
2π
e−a

2/2 da

which does not have an analytical solution. It has been approximated with numerical integration
and tabulated in normal probability tables.

→ GeoGebra for interactive probability calculations.
Some properties:

1. The normal curve is bell-shaped and is symmetric about the mean, so the mean, median, and
mode are equal

2. The normal curve approaches, but never touches, the x-axis.

Fact 4.1 If X ∼N(µ,σ2), then
Y = aX+ b

is normally distributed with parameters aµ+ b and a2σ2 : Y ∼N(aµ,a2σ2).

Proof.

FY (y) = P(Y ≤ y) = P(aX+ b≤ y) = P
(
X ≤ y− b

a

)
= FX

(
y− b
a

)

http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf
https://www.geogebra.org/classic/probability
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Therefore, differentiating,

fY (y) = 1
a
fX

(
y− b
a

)
= 1√

2πaσ
e
−

(
y−b
a −µ

)2

2σ2

= 1√
2πaσ

e
− (y−(aµ+b))2

2(aσ)2

which corresponds to the normal PDF (4.1) with parameters aµ+ b and a2σ2.
�

Fact 4.2 — z-scores. If X ∼N(µ,σ2), then

Z = X−µ
σ

is normally distributed with parameters 0 and 1 : Z ∼N(0,1).

Note that quantiles are related by:

xα = µ+ zασ (4.2)

where zα = Φ−1(α) from the table.

Fact 4.3 Let Z be a standard normal random variable. Then,

Φ(−z) = 1−Φ(z)

4.2.1 The Central Limit Theorem for sums
We can generalize the previous facts in the very important central limit theorem:

Fact 4.4 — The Central Limit Theorem (CLT). The linear combination

U =
n∑
i=1

aiXi = aTX

with a = (a1, . . . ,an)T tends to the normal distribution as n→∞ with

E(U) =
n∑
i=1

aiµi = aTµ,

V(U) = aTΣXa

=
n∑
i=1

a2
iσ

2
i + 2

n∑
i=1

n∑
j=i+1

aiajσi,j︸ ︷︷ ︸
0 if Xi’s are independent
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where

ΣX = E
(
(X−µ)(X−µ)T

)
=


σ2

1 σ12 σ13 · · ·
σ21 σ2

2 σ23 · · ·
σ31 σ32 σ2

3 · · ·
... ... ... . . .


is the Covariance matrix.

4.2.2 How to read normal probability tables
→ Download a normal probability tables.

−2 0 2
0

0.2

0.4

N(0,1)
1.64

z

· · · 0.03 0.04 · · ·
...

1.5
1.6 0.9495
...

P(Z < z)

Normal Probability Table

→normal probability calculation with the TI 83/84.

Example 128. If X ∼N(µ,σ2) with µ= 1.7, σ2 = 0.12, calculate P(1.7<X < 1.8)

Solution:

1.2 1.4 1.6 1.8 2 2.2
0

2

4

µ= 1.7, σ2 = 0.12
P
(

1.7−µ
σ

< Z <
1.8−µ
σ

)

X

−6 −4 −2 0 2 4 6Z=X−µ
σ

http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf
https://mathbits.com/MathBits/TISection/Statistics2/normaldistribution.htm
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P(1.7<X < 1.8) = P
(

1.7−µ
σ

< Z <
1.8−µ
σ

)
= P(0< Z < 1)
= Φ(1)−Φ(0)
= 0.8413−0.5
= 0.3413

�

4.2.3 The “68-95-99.7 Rule”
For a normal random variable,
• Approximately 68% of the values lie within one standard deviation of the mean.
• Approximately 95% of the values lie within two standard deviations of the mean.
• Approximately ALL (99.7%) of the values lie within three standard deviations of the mean.

68.2%

95%

99.7%

34.1% 34.1% 13.6%13.6% 2.1%2.1%

−3σ −2σ −σ µ σ 2σ 3σ

−3 −2 −1 0 1 2 3 Z=X−µ
σ

X

Example 129. With µ = 5 and σ = 1, the Rule says that about 95% lie between µ− 2σ and
µ+ 2σ, which is the interval from 3 to 7.

Example 130. The length of time required to complete a college test is found to be normally
distributed with mean 50 minutes and standard deviation 12 minutes.
(a) When should the test be terminated if we wish to allow sufficient time for 90% of the students
to complete the test?
(b) What proportion of students will finish the test between 30 and 60 minutes?

Solution: Let X be the length of time to complete the test. Then Z = X−50
12 ∼N(0,1).

a) Need to find the 90th percentile, x0.9 = µ+ z0.9σ, with z0.9 = 1.28 from the table. So at least
x0.9 = 65.36 minutes should be given.

b) P (30<X < 60) = P (−1.67< Z < 0.83) = 0.75.
�
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Example 131. Let X be a normal random variable with parameters

µ= 3
σ2 = 9

Find
a) P(2<X < 5)
b) P(X > 3)

Solution:
a) Let

Z = X−µ
σ

Therefore, Z is a standard normal random variable.
Therefore,

P(2<X < 5) = P
(

2−3
3 <

X−3
3 <

5−3
3

)

= P
(
−1

3 < Z <
2
3

)

= Φ
(

2
3

)
−Φ

(
−1

3

)

= Φ
(

2
3

)
−
1−Φ

(
1
3

)
≈ 0.3779

b) Let

Z = X−µ
σ

Therefore, Z is a standard normal random variable.
Therefore,

P(X > 3) = P
(
X−3

3 >
3−3

3

)
= P(Z > 0)
= 0.5

�

Example 132. A school wishes to accept 2000 students for their freshman class, and they expect
20,000 applications. In order to make their admissions decisions very easy, the only criterion
they will use is SAT score. So, their goal is to accept a student if and only if their SAT score is
in the top 10%. However, because their computer system is so old, the applications only come in
one at a time, and they must decide whether to accept or reject before moving on to the next
application. Assuming that SAT scores are normally distributed with a mean of 1000 and a
standard deviation of 200, how should they set the score threshold to end up with as close to
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2000 students as possible? Give your answer first symbolically (in terms of a pdf, cdf, etc), then
use a normal distribution table to provide a numerical answer.

Solution: We want to find the SAT score x such that 90% of scores are below x and 10% of scores
are above x.
We look through the table for the value closest to 0.90, and find that in a standard normal
distribution, P (X ≤ 1.28) = 0.8997 and P (X ≤ 1.29) = 0.9015. We’ll use the first value because its
probability is closer to 0.9.
Hence, the cutoff should be placed 1.28 standard deviations above the mean. This is

1000 + 200(1.28) = 1256 points.

�

Example 133. — * Traffic congestion occurs when the demand exceeds the capacity of the system.
The current airplane traffic demand at an airport (number of takeoffs and landings per hr) during
the peak hours of each day is a normal variate with a mean of 200 planes and a standard
deviation of 50 planes.
(a) If the present runway capacity (for landings and take-offs) is 350 planes per hour, what is
the current probability of traffic congestion at this airport? Assume that there is one peak hour
per day
(b) If the mean traffic demand increases 10% each year, with the c.o.v. remaining constant, what
would be the probability of congestion at the airport in 10 yrs?
(c) If the projected growth of traffic demand is correct, what airport capacity will be required in
10 yr to maintain the current probability of congestion?

Solution: Answer: (a) 0.00135 (b) 0.69146 (c) 700

(a)

P (congestion) = 1−φ(350−200
50 )

= 0.00135

(b) Mean: 200× (1 + 10%×10) = 400
standard deviation: 50·400

200 = 100

P (congestion) = 1−φ(350−400
100 )

= 0.69146

(c) New capacity:

Capacity = 400 + 3×100
= 700

�

Example 134. — Travel time from point A and to point B In the transportation network below, let

Xi =the travel time on link i= 1,2 . . .5
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Astart

C

D B2

i= 1

3

4
5

From historical records we have good estimations of means, variances and co-variances:

i µi σi δi
1 10. 2. 0.2
2 11. 3.3 0.3
3 11. 3.3 0.3
4 4. 0.8 0.2
5 10. 2. 0.2

ΣX =

4. 0.66 0.66 0.16 0.4
0.66 10.89 7.62 0.26 0.66
0.66 7.62 10.89 1.06 0.66
0.16 0.26 1.06 0.64 0.16
0.4 0.66 0.66 0.16 4.




a) what is the fastest route from A to B?
b) what is the probability that route A D B is faster than A C B?
c) what is the probability that route A D B is faster than A C D B?

Solution:
a) what is the fastest route from A to B?

Let:
Route 1: A→D→B
Route 2: A→ C→B
Route 3: A→ C→D→B
Ti = Travel time on route i= 1,2,3.
Then,

T1 =X2 +X3
T2 =X1 +X5
T3 =X1 +X3 +X4

Since travel times are the sum of normal random variables,
Ti ∼N

(
E(Ti),V(Ti)

)
with:

E(T1) = µ2 +µ3 = 22
E(T2) = µ1 +µ5 = 20
E(T3) = µ1 +µ3 +µ4 = 25

and

V (T1) = 2σ2,3 +σ2
2 +σ2

3 = 37.
V (T2) = 2σ1,5 +σ2

1 +σ2
5 = 8.8

V (T3) = 2σ1,4 + 2σ1,3 + 2σ4,3 +σ2
1 +σ2

4 +σ2
3 = 19.28
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T1

T2

T3

10 15 20 25 30 35 40
min

0.05

0.10

0.15

Distribution of travel times

Route 2 is the fastest on average, but for risk-taking people Route 1 could be beneficial.
b) what is the probability that Route 1: A D B is faster than Route 2: A C B?

P(T1 < T2) = P(T1−T2 < 0), let Y = T1−T2
= P(Y < 0) = 0.376726

Since Y is a linear combination of T1−T2, it is also normally distributed Y ∼N (
E(Y ),V(Y )

)
with:

E(Y ) = E(T1)−E(T2) = 2
V(Y ) = V(T1) + V(T2)−2Cov(T1,T2) = 40.54

make sure you understand the negative sign!

Cov(T1,T2) = σ1,2 +σ1,3 +σ2,5 +σ3,5 = 2.64

from the covariance matrix.
c) what is the probability that Route 1 is faster than Route 3: A C D B?

Similar to the previous answer, but now:

Cov(T1,T3) = σ1,2 +σ1,3 +σ2,3 +σ2,4 +σ3,4 +σ2
3 = 21.2

and P(T1−T3 < 0) = 0.788644
�

Example 135. — Travel time from point A and to point B (again) In the transportation network
below, let

Xi =the travel time on link i= 1,2 . . .5

Astart

C

D B2

i= 1

3

4
5

From historical records we have good estimations of means, variances and co-variances:
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i µi σi δi
1 10. 1. 0.1
2 12. 3.6 0.3
3 13. 3.9 0.3
4 4. 0.4 0.1
5 10. 1. 0.1

ΣX =

1. 0. 0. 0. 0.
0. 12.96 9.83 0. 0.
0. 9.83 15.21 0.62 0.
0. 0. 0.62 0.16 0.
0. 0. 0. 0. 1.




a) what is the fastest route from A to B?
b) what is the probability that route A D B is faster than A C B?
c) what is the probability that route A D B is faster than A C D B?

Solution:
a) what is the fastest route from A to B?

Let:
Route 1: A→D→B
Route 2: A→ C→B
Route 3: A→ C→D→B
Ti = Travel time on route i= 1,2,3.
Then,

T1 =X2 +X3
T2 =X1 +X5
T3 =X1 +X3 +X4

Since travel times are the sum of normal random variables,
Ti ∼N

(
E(Ti),V(Ti)

)
with:

E(T1) = µ2 +µ3 = 25
E(T2) = µ1 +µ5 = 20
E(T3) = µ1 +µ3 +µ4 = 27

and

V (T1) = 2σ2,3 +σ2
2 +σ2

3 = 47.8
V (T2) = 2σ1,5 +σ2

1 +σ2
5 = 2

V (T3) = 2σ1,4 + 2σ1,3 + 2σ4,3 +σ2
1 +σ2

4 +σ2
3 = 17.6

T1

T2

T3

10 15 20 25 30 35 40
min

0.05

0.10

0.15

0.20

0.25

0.30

Distribution of travel times



4.2 Normal Distribution 133

Route 2 is the fastest on average, but for risk-taking people Route 1 could be beneficial.
b) P(T1−T2 < 0) = 0.239367
c) P(T1−T3 < 0) = 0.702722

�

Example 136. — * Bob and John are traveling from city A to city D. Bob decides to take the
upper route (through B), whereas John takes the lower route (through C) as shown in the
following figure:

The travel times (in hours) between the cities indicated are normally distributed as follows:

T1 ∼ N(8,4)
T2 ∼ N(5,1)
T3 ∼ N(5,4)
T4 ∼ N(7,4)

Although the travel times can generally be assumed to be statistically independent, T3 and T4
are dependent with a correlation coefficient of 0.8.
(a) What is the probability that John will not arrive in city D within 12 hours?
(b) What is the probability that Bob will arrive in city D earlier than John by at least 1 hour?
(c) Which route (upper or lower) should be taken if one wishes to minimize the expected travel
time from A to D? Justify.

Solution: (a)
Let TJ be John’s travel time in hours:

TJ = T3 +T4
µTJ = 5 + 7 = 12
σTJ =

√
4 + 4 + 2×0.8×2×2

= 3.795

Hence

P (TJ < 12) = Φ(12−12
3.795 )

= Φ(0)
= 0.5

(b)
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Let TB be Bob’s travel time in hours:

TB = T1 +T2
µTB = 8 + 5 = 13
σTB =

√
4 + 1

=
√

5

Hence

P (TJ −TB > 1) = P (TB−TJ + 1< 0)

Now let R = TB−TJ + 1;R is normal with

µR = µTB −µTJ + 1 = 2
σR =

√
σ2
TB

+σ2
TJ

=
√

19.4

Hence

P (R < 0) = Φ( 0−2√
19.4

)

= Φ(−0.454)
= 0.326

(c)Since the lower route (A-C-D) has a smaller expected travel time and variance one could take
the lower route to minimize expected travel time from A to D. But a risk-seeking person might
want to take the longer route with higher variance. �

Example 137. — * The daily revenue X of a store is the sum of the amounts paid by each
customer i,Yi during one day. These amounts Yi have a mean and variance of $15 and ($15)2.
(a) Write down an equation relating X and the amounts paid by each customer during one day.
(5 points)
(b) On a given day, 100 customers purchased items in the store. Approximate the probability
that the daily revenue exceeded 1250. (15 points)

Solution: (a)Let: n: Total number of customers
Yi: Amount paid by each customer
Equation relating X and the amounts paid by each customer during one day:

X =
n∑
i=1

Yi

(b) According to the question, Yi follows exponential distribution:

µYi = 15
σYi = 15
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Because X =∑100
i=1Yi, according to CTL, X follows normal distribution with:

µX = 15×100
= 1500

σX = 15×
√

100
= 150

The probability that the daily revenue exceeded 1250:

P (X > 1250) = 1−Φ(1250−µX
σX

)

= 1−Φ(−1.67)
= 0.953

�

4.3 Lognormal Distribution

X ∼ LogN(λ,ξ2),X > 0↔ logX ∼N(λ,ξ2)

λ= E(logX) , ξ2 = V(logX)

The PDF is

f(x) = 1√
2πξx

e−(log(x)−λ)2/2ξ2
,x > 0

The mean and variance are:

E(X) = eλ+ξ2/2

V(X) = e2λ+ξ2
(eξ

2−1)
and hence the coefficient of variation squared is

δ2
X = eξ

2−1
≈ ξ2 when ξ2 is small, say ξ < 1/3.

Note: λ= logx0.5

5 10 15 20
X

0.05

0.10

0.15

0.20

0.25

PDF, (ξ = 1)

λ=1 λ=2 λ=3

10 20 30 40 50 60
X

0.2

0.4

0.6

0.8

1.0

CDF

STOP! The parameters λ and ξ are generally not given and need to be calculated first.

Typically, there are the following situations:
1. if we are given µX ,σ2

X :

δ2
X = σ2

X/µ
2
X (4.3)

ξ2 = log(1 + δ2
X) or ξ2 = δ2

X if δ2
X is small, say < 1/3. (4.4)

λ= logµX − ξ2/2 (4.5)
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2. if we are given x0.5, δX :

ξ2 = log(1 + δ2
X) or ξ2 = δ2

X if δX is small, say < 1/3. (4.6)
λ= logx0.5 (4.7)

Once the parameters λ and ξ are determined, we can calculate probabilities using the standard
normal tables:

P(X < x) = P(logX < logx) = Φ
(

logx−λ
ξ

)
(4.8)

because logX ∼N(λ,ξ2).
Percentiles xα can also be obtained from the standard normal percentiles, zα:

xα = eλ+zα·ξ (4.9)

This is because, by definition, P(X < xα) = α, and in this case we have:

P(X < xα) = P(logX < logxα)

= Φ
(

logxα−λ
ξ

)
= α

the last equality implies that logxα−λ
ξ is the standard normal percentile, zα and (4.9) follows.

Example 138. Lifetimes of a certain component are lognormally distributed with its median 3
days and parameter ξ = 0.5 days.
(a) Find the mean lifetime of these components
(b) Find the standard deviation of the lifetimes

Solution: Answer: (a) 3.40 (b) 1.81
(a) λ= log(x0.5) = log(3)
µX = eλ+ 1

2ξ
2 = 3.40

(b) δX =
√
eξ

2−1 = 0.533
σX = δXµX = 0.533×3.40 = 1.81

�

Example 139. — Time between inspections. The time T between breakdowns of a major equip-
ment in an oil platform follows a lognormal distribution with a median of 6 months and a
coefficient of variation of 30 percent.
What should be the interval t∗ between inspections and repairs in order to ensure a 95 %
probability that the equipment will be operational at any time.

Solution:
We need P(T > t∗) = 0.95 or equivalently P(T < t∗) = 0.05 which means that t∗ is the 5th percentile:

t∗ = t0.05 = eλ+z0.05·ξ

which gives 3.66 months. �
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Example 140. — * An office building is planned and designed with a lateral load-resisting
structural system for earthquake resistance in a seismic zone. The seismic capacity (in term of
force factor) of the proposed system has a mean of 6.5 and c.o.v. 29.8% and is assumed to have
a Lognormal distribution.
(a)What is the estimated probability of damage to the office building when subjected to 5.5-
magnitude earthquake?
(b)If the building survived (without any damage) a previous 4.0-magnitude earthquake, what
would be its future probability of no damage under a 5.5-magnitude earthquake? (Assume that
after the moderate earthquake the building remains in its original condition)
(c)What is the seismic capacity’s 85th percentile ?

Solution: Answer: (a) 0.341 (b) 0.708 (c) 8.47
Random variable X: seismic capacity
Given µX = 6.5 and δX = 0.298
We have σX = µXδX = 1.937
We have δX < 0.3 so,

ξ = δX
= 0.298

λ = logµX −
1
2ξ

2

= 1.827

Or you can do

ξ =
√

log(1 + δ2
X

)
= 0.292

λ = logµX −
1
2ξ

2

= 1.829

(a) The probability of damage on a 5.5-magnitude earthquake is,

P (X < 5.5) = Φ(log5.5−λ
ξ

)

= Φ(−0.41)
= 0.341

(b)

P (X > 5.5|X > 4) = 1−P (X < 5.5)
1−P (X < 4)

= 1−0.341
1−Φ( log4−λ

ξ )
= 0.708

(c)

P (X < x85) = Φ(log(x85)−λ
ξ

)

= 0.85
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Referring to standard normal table: Φ(1.04) = 0.85

x85 = e1.04ξ+λ

= 8.47

�

4.3.1 The Central Limit Theorem for products
Fact 4.5 For a set of positive random variables Xi, i= 1,2 . . .n, the product

U =
n∏
i=1

Xai
i

tends to the lognormal distribution as n→∞ with parameters:

λU = aTλ=
n∑
i=1

aiλi,

ξ2
U = aT(ΣlogX)a =

n∑
i=1

a2
i ξ

2
i + 2

n∑
i=1

n∑
j=i+1

aiajξi,j︸ ︷︷ ︸
0 if Xi’s are independent

where

a = (a1,a2, . . .an)T

λi = E(logXi)
λ= (λ1,λ2, . . .λn)T

logX = (logX1, logX2, . . . logXn)T

and:

ΣlogX = E
(
(logX−λ)(logX−λ)T

)
=


ξ2
1 ξ12 ξ13 · · ·
ξ21 ξ2

2 ξ23 · · ·
ξ31 ξ32 ξ2

3 · · ·
... ... ... . . .


is the Covariance matrix of the logXi, i.e. ξij = Cov

(
logXi, logXj

)
and ξ2

i = V(logXi).

Note: If the Xi’s have the lognormal distribution, this result is exact, otherwise it is an approxi-
mation.

Proof. logU =
n∑
i=1

ai logXi is a linear combination so by the CLT for linear combinations, for large
n:

logU ∼N(E(logU) ,V(logU))
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with:

E(logU) =
n∑
i=1

aiE(logXi)

= aTλ,
V(logU) = aT(ΣlogX)a

=
n∑
i=1

a2
i ξ

2
i + 2

n∑
i=1

n∑
j=i+1

aiajξi,j︸ ︷︷ ︸
0 if Xi’s are independent

By definition of lognormal random variables we conclude the result. �

The figure below shows the agreement of the CLT for the distribution of the geometric average
of n random variables Xi ∼ fX , ie:

U =
n∏
i=1

X
1
n
i

for 3 distributions fX and different values n.
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It can be seen that regardless of the initial distribution fX that CLT provides a good approximation
for n > 5.

A corollary of Fact 4.5: If X ∼ LogN(λ,ξ2) then

Y = cX ∼ LogN(logc+λ,ξ2)

for any constant c. To see this, simply treat the constant as a lognormal rv with zero variance.

Example 141. Let:

U = 7.58
√
X1X2

3
X2

3√X4

Suppose the Xi’s are independent and that we have the following information:
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i Xi µi δi
1 X1 7. 0.19
2 X2 3. 0.05
3 X3 3. 0.28
4 X4 1. 0.81

(a) Approximate the mean and variance of U .
(b) Approximate P(U < 94)

Solution: (a) Using equations (4.3) we can calculate:

i Xi µi δ2
i σi λi ξ2

i ai
1 X1 7. 0.036 1.33 1.93 0.035 1/2
2 X2 3. 0.003 0.15 1.1 0.002 −1
3 X3 3. 0.078 0.84 1.06 0.075 2
4 X4 1. 0.656 0.81 −0.25 0.504 −1/3

and according to the CLT for products, we have that U tends to the lognormal distribution
parameters:

λU = logc+
n∑
i=1

aiλi,

= log(7.58) + 1.93
2 −1.1 + 2×1.06 + 0.25

3 = 4.0938

ξ2
U =

n∑
i=1

a2
i ξ

2
i

=
(

1
2

)2
0.035 + (−1)20.002 + 220.075 +

(
−1

3

)2
0.504 = 0.36675

and the mean and variance of U are approximately:

E(U) = eλU+ξ2
U/2 = 72.04

V(U) = e2λU+ξ2
U (eξ

2
U −1) = 2299.26

(b) Assuming U ∼ LogN(λU , ξ2
U ):

P (U < 94) = Φ(log94−λU
ξU

) = Φ(0.742155)

= 0.771003

�

Example 142. Let:

W = 1.46X1X2
4

X2
2
√
X3

Suppose the Xi’s are independent and that we have the following information:
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i Xi µi δi
1 X1 4. 0.74
2 X2 1. 0.94
3 X3 1. 0.65
4 X4 7. 0.06

(a) Approximate the mean and variance of W .
(b) Approximate P(W < 4110)

Solution: (a) Using equations (4.3) we can calculate:

i Xi µi δ2
i σi λi ξ2

i ai
1 X1 4. 0.5476 2.96 1.17 0.4367 1
2 X2 1. 0.8836 0.94 −0.32 0.6332 −2
3 X3 1. 0.4225 0.65 −0.18 0.3524 −1

2
4 X4 7. 0.0036 0.42 1.94 0.0036 2

and according to the CLT for products, we have that W tends to the lognormal distribution
parameters:

λW = log( 1
2 ·32.2) +

n∑
i=1

aiλi,

= 1.09134

ξ2
W =

n∑
i=1

a2
i ξ

2
i

= 0.148124

and the mean and variance of W are approximately:

E(W ) = eλW+ξ2
W /2 = 2190.43

V(W ) = e2λW+ξ2
W (eξ

2
W −1) = 98,759,027

(b) Assuming W ∼ LogN(λW , ξ2
W ):

P (W < 4110) = Φ(log4110−λW
ξW

) = Φ(0.0188)

= 0.507

�

Example 143. — * The hydraulic head loss in a pipe may be determined by the Darcy-Weisbach
equation as follows:

H = fLV 2

2Dg

where:
L=length of a pipe, V=flow velocity of water in a pipe, D=pipe diameter, f=coefficient of
friction, g=gravitational acceleration=32.2 ft/sec2. Suppose a pipe has the following properties:
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i Xi µi δi
1 L 100. 0.1
2 D 1. 0.1
3 f 0.02 0.2
4 V 10. 0.15

(a) Approximate the mean and standard deviation of the hydraulic head loss of the pipe.
(b) Approximate P(H<3ft) [Hint: CLT]

Solution: (a) Using equations (4.3) we can calculate:

i Xi µi δ2
i σi λi ξ2

i ai
1 L 100. 0.01 10. 4.6 0.01 1
2 D 1. 0.01 0.1 0. 0.01 −1
3 f 0.02 0.04 0.004 −3.93 0.0392 1
4 V 10. 0.0225 1.5 2.29 0.0223 2

and according to the CLT for products, we have that H tends to the lognormal distribution
parameters:

λH = log( 1
2 ·32.2) +

n∑
i=1

aiλi,

= 1.09134

ξ2
H =

n∑
i=1

a2
i ξ

2
i

= 0.148124

and the mean and variance of H are approximately:

E(H) = eλH+ξ2
H/2 = 3.20722

V(H) = e2λH+ξ2
H (eξ

2
H −1) = 1.64227

(b) Assuming H ∼ LogN(λH , ξ2
H):

P (H < 3) = Φ(log3−λH
ξH

) = Φ(0.0188)

= 0.507

�

Example 144. Repeat the example above with a pipe with the following properties:

i Xi µi δi
1 L 100. 0.05
2 D 1. 0.15
3 f 0.02 0.25
4 V 9. 0.2

(a) Approximate the mean and standard deviation of the hydraulic head loss of the pipe. (ans:
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2.67501, 1.96151)
(b) Approximate P(H<3ft) (ans: 0.684)

Example 145. — Stock Price Distribution For a given stock, let:
Pt = stock price at time period t= 1,2, . . .
Rt = (Pt−Pt−1)/Pt−1 = rate of return for time period t
St = Pt/Pt−1 = 1 +Rt= return for time period t

Show that the stock price Pt tends to the lognormal distribution. Assume that P0 is the current
stock price, ie a constant.

Solution: Note:

Pt = P0(1 +R1)(1 +R2) . . .(1 +Rt)

= P0
t∏

j=1
Sj

By the CLT for products P0
∏t
j=1Sj tends to the LogN(λt, ξ2

t ) with parameters:

λt = log[P0] +
t∑

j=1
E[logSj ], ξ2

t =
t∑

j=1
V [logSj ]

Typically, t = 0 is the present and we assume that future returns S1,S2, . . . will have a common
distribution (estimated with historical data). This implies that E[logSj ] and V [logSj ] are constants,
say λ and ξ, independent of the time period j = 1,2 . . . Therefore,

λt = log[P0] + tλ, ξ2
t = tξ2 (4.10)

If the returns St’s have the lognormal distribution, this result is exact, otherwise it is an approxi-
mation.
The figure below shows weekly stock prices for 6 tech companies in 2017, and it can be seen
that the lognormal distribution is a good approximation.
Returns : Log-Normal Normal
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Furthermore, one may use the results in this example to produce a price forecast; in the case of
Netflix we get:

Apr Jul Oct Jan
100

120

140

160

180

200

220

240

2017 | 2018

P
ric
e,
$

Netflix stock price forecast

In this figure we know the price of Netflix stock up to the last week of December 2017, so P0 = $190.
The forecast is shown as the decile curves from the lognormal distribution with the parameters
given in equation (4.10).

�
Practice questions

1. On December 31st 2017, what is the probability that Netflix stock price will exceed $350 on
February 15 2018?

2. On July 1st, what is the probability that Netflix stock price will exceed $150 on October 1st
2017?

3. what is the probability that Google stock price will exceed Apple’s in two more weeks?

4.4 Bernoulli Family of Random Variables
• Bernoulli
• Binomial and multinomial
• Geometric and negative binomial
Bernoulli trial: An experiment with only two outcomes: the value 1 (success) with probability

p and 0 (failure) with probability 1−p. For example,
• Toss a coin. Outcomes: heads or tails.
• Roll a die. Outcomes: even or odd.
• Draw a card. Outcomes: ace or not ace.

Bernoulli random variable A random variable X is said to be a Bernoulli random variable with
parameter p:

X ∼ Ber(p)
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if its probability mass function is given by

pX (x) =
{
p, x= 1
q = 1−p, x= 0

and

E(X) = p

V(X) = pq

Example 146. — Indicator Random Variables Let X be the random variable such that

X =
{

1 if event A occurs
0 otherwise

Find the mean and variance of X in terms of P(A).

Solution: Sense the probability of success here is p= P(A), we have:

E(X) = P(A)
V(X) = P(A)(1−P(A))

�

4.4.1 Binomial random variable
Consider n independent Bernoulli trials with probability of success p, and probability of failure
q = 1− p. If X represents the number of successes that occur in the n Bernoulli trials,
then X is said to be a binomial random variable with parameters (n,p).
Examples of binomial random variables are:
• Toss a coin 10 times. Let X be the number of heads.
• Roll a die 6 times. Let X be the number of even rolls.
• Draw 4 cards. Let X be the number of aces. (Is this binomial?)
X is the number of successes in n Bernoulli trials.

X ∼ Bin(n,p)

The PMF pX (x) = P(X = x) is

pX (x) =
(
n

x

)
px(1−p)n−x (4.11)

and

E(X) = np

V(X) = npq
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Notice that the CDF FX (x) = P(X ≤ x) does not simplify:

FX (x) =
x∑
i=1

(
n

i

)
pi(1−p)n−i (4.12)

The logic for the PMF is as follows:
• x successes and n−x failures can be arranged in exactly

(
n
x

)
distinct sequences of length n

trails.
• Each sequence has the same probability of occurring, px(1−p)n−x.
• Therefore, the probability of one of the patterns occurring is(

n

x

)
px(1−p)n−x.

The name for this random variable comes from the binomial theorem:
Fact 4.7 — The Binomial Theorem. Let n be a nonnegative integer and let a and b be any real
numbers. Then

(a+ b)n = an+
(
n

1

)
an−1b+

(
n

2

)
an−2b2 + · · ·+

(
n

n−1

)
abn−1 + bn

=
n∑
i=0

(
n

i

)
aibn−i.

Example 147. Consider the experiment of tossing 4 fair coins. Let X be the random variable
that denotes the number of heads that result. The sample space for this experiment is illustrated
in the table below, which also shows the number of heads in each possible case.

coin 1 H H H H H H H H T T T T T T T T
coin 2 H H H H T T T T H H H H T T T T
coin 3 H H T T H H T T H H T T H H T T
coin 4 H T H T H T H T H T H T H T H T
ΣH 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0

a) Find the CDF and PMF of X and draw sketches of each one.
b) Determine the median, upper quartile and lower quartile and show them graphically in

one of the sketches of part a)
c) Determine P(0<X ≤ 3 | X ≤ 2)
d) BONUS: suppose two players play this game, and the one with the largest number of

Hs wins. Let X1 and X2 denote their corresponding random variables, the distribution
of each one corresponding to the one you calculate it in part a). Find the joint PMF
and the probability that player one wins by more than one point. Hint: X1 and X2 are
independent.

Solution:
a) Find the CDF and PMF of X and draw sketches of each one.

X ∼ Bin(n= 4,p= 1/2)
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→ pX (x) =
(4
x

)
0.5x(1−0.5)4−x =

(4
x

)
0.54 =

(4
x

)
/16, or:

pX (x) =


1/16 if x= 0 or x= 4
4/16 if x= 1 or x= 3
6/16 if x= 2

0 1 2 3 4
1/16

1/4

3/8

1/4

1/16

x

PM
F

0 2 4 6
1/16

5/16

11/16

15/161

x0.25x0.5 x0.75

x
C

D
F

b) Determine the median, upper quartile and lower quartile and show them graphically in one
of the sketches of part a): {2, 3, 1}

c) P(0<X ≤ 3 | X ≤ 2) = 0.91
d) BONUS: suppose two players play this game, and the one with the largest number of Hs wins.

Let X1 and X2 denote their corresponding random variables, the distribution of each one
corresponding to the one you calculate it in part a). Find the joint PMF and the probability
that player one wins by more than one point. Hint: X1 and X2 are independent.

�

Fact 4.8 — The sum of n Bernoulli trials has a Bin(n,p) distribution. If Y1,Y2, . . . ,Yn are indepen-
dent Bernoulli random variables,

Yi ∼ Ber(p)
for all i, and we define

X =
n∑
i=1

Yi

then, by definition, X ∼ Bin(n,p). This fact makes it easier to compute the mean and variance
of X by using the results we know for linear combinations.

Recall the experiment of tossing 4 fair coins, if we let H=1 and T=0 we can clearly see the
connection between Binomial and Bernoulli random variables:

coin 1,Y1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
coin 2,Y2 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
coin 3,Y3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
coin 4,Y4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
X =∑n

i=1Yi 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0
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Fact 4.9 — Two important corollaries. :
1. The normal approximation

X ∼N(µ= np,σ2 = npq)

is accurate when n it is large enough (by the CLT).
2. The sum of two binomial random variables with the same parameter p is also binomial:

if X1 ∼ Bin(n1,p) and X2 ∼ Bin(n2,p)→X1 +X2 ∼ Bin(n1 +n2,p)

The figure below shows the agreement of the normal approximation with the Bin(n,p) rv for
different values of parameters (n,p).
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Continuity Correction
We saw that the normal approximation to a binomial random variable X ∼ Bin(n,p) is:

X ∼N(µ= np,σ2 = npq)

is accurate when n it is large enough. Then, one can use

P (a≤X ≤ b)≈ Φ
(
b−µ
σ

)
−Φ

(
a−µ
σ

)
. (4.13)

However, the error can be substantial if n is not very large. One way to improve the approximation
is to use the continuity correction:

P (a≤X ≤ b)≈ Φ
(
b+0.5−µ

σ

)
−Φ

(
a-0.5−µ

σ

)
. (4.14)

Analogous continuity corrections apply to the Poisson distribution, in which case µ= θ,σ2 = θ.
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Example 148. A die is rolled 5 times. What is the probability that the result is 6, 3 times?

Solution: Let X be the number of times 6 appears.
Therefore,

X ∼ Bin
(

5, 16

)

Therefore,

P(X = i) =
(
n

i

)
pi(1−p)n−i

∴ P(X = 3) =
(

5
3

)(
1
6

)3(5
6

)3

�

Example 149. A player bets on a number from 1 to 6, both including. Three dice are then rolled.
If the number bet on by the player appears i times where i = 1,2,3, he wins i units. If the
number bet on by the player does not appear on any of the dice, he loses 1 unit.
A game is considered to be fair if the expected value for the player is at least 0. Is this game fair
towards the player?

Solution: Let X be the player’s winnings.
Let Y be the number of times the number the player bet on appeared. Therefore,

Y ∼ Bin
(

3, 16

)
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Therefore,

P(X =−1) = P(Y = 0)

=
(

3
0

)(
1
6

)0(5
6

)3

= 125
216

P(X = 1) = P(Y = 1)

=
(

3
1

)(
1
6

)1(5
6

)2

= 75
216

P(X = 2) = P(Y = 2)

=
(

3
2

)(
1
6

)2(5
6

)1

= 15
216

P(X = 3) = P(Y = 3)

=
(

3
3

)(
1
6

)3(5
6

)0

= 1
216

Therefore,

E[X] = (−1)
(

125
216

)
+ (1)

(
75
216

)
+ (2)

(
15
216

)
+ (3)

(
1

216

)

=− 17
216

Therefore, as the expected value of the winnings is less than 0, the game is not fair towards the
player. �

Example 150. Tests show that about 20% of all private wells in some specific region are contam-
inated. What are the probabilities that in a random sample of 4 wells exactly 2, fewer than 2, or
at least 2 wells are contaminated?

Solution: Here n= 4, p= 0.2 (success for being contaminated). We find

P(X = 2) =
(4

2
)
0.220.84−2 = 0.1536 ,

P(X < 2) = P(X = 0) + P(X = 1) =
(4

0
)
0.200.84 +

(4
1
)
0.210.83 = 0.8192 ,

P(X ≥ 2) = P(X = 2) + P(X = 3) + P(X = 4)
= 0.1536 +

(4
3
)
0.230.81 +

(4
0
)
0.240.80 = 0.1808 .

�
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Example 151. — Tornadoes, take 3 100 structures are located in a region where tornado wind
force must be considered in its design. Suppose that from the records of tornadoes for the past
200 years, it is estimated that

1. during any given week, at most 1 tornado can occur with probability p= 1/30,
2. the number of tornadoes in different weeks are independent, and
3. if a tornado occurs, a structure will be damaged if the wind speed exceeds the structure

design wind speed of 130 mph,
4. wind speeds have a median of 90 mph, a coefficient of variation of 20 percent, and follow

the lognormal distribution.
Determine the following:

a) the probability that the structure will be damaged this during a tornado?
b) what is the probability the a structure will be damaged in the next year?
c) calculate the mean and variance of the number of structures damaged in the next five

years?
d) If you’re a contractor in charge of rehabilitating the structures in the region after a tornado

damage, compute the mean and variance of your yearly income, U , if you charge c dollars
per rehabilitation work.

e) calculate the coefficient of variation of your yearly income, and comment.

Solution:
a) the probability that the structure will be damaged this during a tornado?

Let Y be the wind speeds during a tornado,
Y ∼ LogN(λ= log90, ξ2 = 0.22)

and the desired probability is
r = P(Y > 130) = 0.033

b) what is the probability the a structure will be damaged in the next year?

Let X be the rv representing the number of tornadoes on a given year, then
X ∼ Bin(n= 52,p= 1/30)

Let D the event that a structure will be damaged in one year.
Since we don’t know the number of tornadoes that will occur, we use the total probability
rule:

P(Dc) =
n∑
x=0

P(Dc|X = x)P(X = x)

=
n∑
x=0

(1− r)xP(X = x)

=
n∑
x=0

(1− r)x
(
n

x

)
px(1−p)n−x

=
n∑
x=0

(
n

x

)
((1− r)p)x(1−p)n−x

= (1− rp)n = 0.944



152 Chapter 4. Special Distributions

and the desired probability is 1-0.944=0.0556. The last step follows from the binomial theorem
(4.7) with a= (1− r)p,b= 1−p.

STOP! Notice that this solution method proves that a simpler way to do this type

of problems is to let Z be the rv representing the number of tornadoes that cause
damage to a structure on a given year, then

Z ∼ Bin(n,pr)

and the desired probability is also P(Z > 0) = 1− (1− rp)n = 0.0556.

c) solved in class
d) solved in class
e) solved in class

�

4.4.2 The Multinomial distribution
This is a generalization of the binomial distribution:

1. k possible outcomes,
2. each occurs with probability pi, with

∑k
i=1 pi = 1

3. Ni = number of observations yielding the ith outcome, i= 1,2 . . .k
The (joint) distribution of the random vector N = {N1, ...,Nk} is

P(n1, ...,nk) = n!
n1! · · ·nk!

k∏
i=1

pnii

and:

E(Ni) = npi

V(Ni) = npi(1−pi)
Cov

(
Ni,Nj

)
=−npipj

Note that, since the occurrence of one outcome means the others cannot occur, the individual
outcomes must be negatively correlated. In fact, the covariance between the ith and jth (i 6= j)
outcome is CovNi,Nj =−npipj .

Fact 4.10 — Marginal distributions. Ni ∼ Bin(n,pi)

Example 152. Suppose that 60% of the supply of raw material kits used in a chemical reaction
can be classified as recent, 30% as moderately aged, 8% as aged, and 2% unusable. 16 kits are
randomly chosen to be used for 16 chemical reactions. Let N1,N2,N3,N4 denote the number of
chemical reactions performed with recent, moderately aged, aged, and unusable materials.

a) Find the probability that exactly one of the 16 planned chemical reactions will not be
performed due to unusable raw materials.

b) Find the probability that 10 chemical reactions will be performed with recent materials, 4
with moderately aged, and 2 with aged materials.
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c) Do you expect N1 and N2 to be positively or negatively correlated? Explain intuitively.
d) Find Cov(N1,N2).

Solution: (a) According to Fact 4.10, N4 ∼ Bin(16,0.02). Thus, P (N4 = 1) = 16(0.02)(0.98)15 =
0.2363.
(b) P (N1 = 10,N2 = 4,N3 = 2,N4 = 0) = 16!

10!4!2!0.6
100.340.082 = 0.0377.

c) Expect them to be negatively related: The larger N1 is, the smaller N2 is expected to be.
d)Cov(N1,N2) =−16(0.6)(0.3) =−2.88.

�

4.4.3 Geometric Random Variables
Let X be the number of Bernoulli trials required until the first success occurs, then

X ∼Geo(p)

The PMF pX (x) = P(X = x) is

pX (x) = qx−1p

with q = 1−p, and

E(X) = 1/p
V(X) = q/p2

The CDF is given by:

P(X ≤ x) = 1− qx

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

pX(x) = qx−1 ·p

x

p= 0.4
p= 0.8

1st success

trial #0 1 2 3 . . . . . . . . . x . . .

↓

STOP! The return period T . In the case of geometric random variables where the

underlying Bernoulli trial is repeated in regular time intervals (e.g. every day, weekly, once a
year...), the mean value E(X) is also called the return period T , and therefore

p= 1
T

For example, if a system is designed to withstand the 100-year earthquake, the implicit
assumption is that (i) the Bernoulli trial is repeated once a year, and (ii) the time between
earthquakes has the geometric distribution with parameter p= 1/100.

Fact 4.11 — Connection between the Geo( p) and Bin(n,p) distributions. If
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Y ∼ Bin(n,p), # of successes in n trails
X ∼Geo(p), # of trials until first success

then, from the picture:

P(X > n) = P(Y = 0)

=
(
n

0

)
p0qn−0

= qn

1st success

trial #0 1 2 3 . . . n x . . . .

↓

Therefore, the CDF of the geometric distribution FX (x) is given by:

P(X ≤ x) = 1− qx (4.15)

Fact 4.12 — Memoryless Property of the Geometric Distribution. Let i, j be positive integers.
X ∼Geo(p). Then

P (X > i+ j|X > i) = P (X > j)

trial #

0 .
i

. .
i+ j

.
j

This means that, if i represents the present trial number, all that matters for a geometric rv
is the number of additional trials j until the first success, which also has the Geo(p)
distribution.

Proof.

P (X > i+ j|X > i) = P ({X > i+ j}∩{X > i})
P (X > i)

= P (X > i+ j)
P (X > i)

= q(i+j)

qi
= qj

= P (X > j)

�

This result is intuitive because by definition the Bernoulli trials are independent of one another,
and therefore past outcomes do not influence future outcomes.

Example 153. — The height above sea level of a fixed offshore platform is designed to withstand
the 20-year wave height. Determine

a) in one year, what is the probability that the platform will be flooded?



4.4 Bernoulli Family of Random Variables 155

b) the probability that the platform will be subjected to the design wave height within the
return period ?

c) the probability that the first exceedance of the design wave height will occur after the
third year?

d) If the first exceedance of the design wave height should occur after the third year, what is
the probability that such a first exceedance will occur in the fifth year?

Solution:
a) in one year, what is the probability that the platform will be flooded?

Since the return period is 20 years, the design wave height will be exceeded with p= 1/20 = 5%
probability each year.

b) the probability that the platform will be subjected to the design wave height within the
return period ?

Let X be the number of years until the next flooding. Therefore,

X ∼Geo(1/20)→ P(X ≤ 20) = 1− (1−1/20)20 = 0.6425

c) the probability that the first exceedance of the design wave height will occur after the third
year?

P(X > 3) = 1−P(X ≤ 3) = 0.953

d) If the first exceedance of the design wave height should occur after the third year, what is the
probability that such a first exceedance will occur in the fifth year?

P(X = 5|X > 3) = 0.048
�

STOP! Approximation for rare events. Solution b) above for the probability that the

first event (flooding) happens within one return period, can be simplified to

P(X ≤ T )≈ 1−e−1 = 0.6321

in the case of events with long return period T , by virtue of the identity

lim
T→∞

(1− 1
T

)T = e−1

Example 154. — * 8.5-magnitude earthquakes in the city of San Diego, CA, have a return period
of 30 years. Houses and tall buildings can suffer structural damage during such an earthquake
with probabilities 50 and 20 percent, respectively.
(a) Find the probability of damage in 100 years using the Bernoulli model where one trial = one
year.
(b) Find the probability that in 100 years there will be more than 2 damages to any particular
structure.
(c) If there are 1000 houses and 950 buildings in the region, find the probability that within 100
years there will be more structural damage to buildings than houses.
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(d) BONUS: If you’re a contractor in charge of rehabilitating the structures in the region, compute
the probability that your yearly income, U , will exceed 1,000,000 dollars if you charge 10,000
and 200,000 thousand dollars per rehabilitation of houses and tall buildings, respectively.

Solution: a) Assume that if the building was not damaged after an earthquake it remains in its
original condition.
Probability of occurrence of earthquake in a certain year:

p = 1
T

= 1/30

Probability of damage if an earthquake happens:

r1 = 0.5 (houses)
r2 = 0.2 (buildings)

Probability of damage in one year:

p1 = r1p= 0.0166667 (houses)
p2 = r2p= 0.0066667 (buildings)

Let X1 and X2 be the number of years between earthquakes that produced damage to a given
house and building, respectively. Then,

Xi ∼Geo(pi)→ P(Xi ≤ 100) = 1− (1−pi)100

which gives that the probability of damage during the next 100 years are 0.186241 and 0.512272 for
a house and building, respectively.

(b) Find the probability that in 100 years there will be more than 2 damages to any particular
structure.

Let random variable Yi be the number of damages in 100 years of a structure of type i. Then,

Yi ∼Bin(100,pi)→ P(Yi ≥ 2) = 1−P(Yi < 2)

which gives 0.233259 and 0.0297029 for a house and building, respectively.

(c) if there are n1 = 1,000 houses and n2 = 950 buildings, find the probability that within 100 years
there will be more structural damage to buildings than houses.

Let W1 and W2 be the number of damages in 100 years of ALL structures of type i. Then,

Wi =
ni∑
j=1

Yi,j

∼ N(niE(Yi),niV(Yi)) by the CLT

where

E(Yi) = 100pi
V(Yi) = 100piqi
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Finally, P(W2 >W1) = P(W2−W1 > 0), which gives ≈ 0 in this case. We used

W2−W1 ∼N

E(W2)−E(W1)︸ ︷︷ ︸
=−33.3

,V(W2) + V(W1)︸ ︷︷ ︸
=1284.7


(d) BONUS: If you’re a contractor in charge of rehabilitating the structures in the region, compute
the probability that your yearly income, U , will exceed 1,000,000 dollars if you charge 10,000 and
200,000 thousand dollars per rehabilitation of houses and tall buildings, respectively.

Here, we are interested in

U =
1000∑
j=1
×10,000Y1,j +

950∑
j=1

200,000×Y2,j

By CLT and linearity of expectation we get

U ∼N

E(U)︸ ︷︷ ︸
1,433

, V(U)︸ ︷︷ ︸
253,283


in thousands of dollars. The final answer is 0.80539. �

Example 155. Alice eats cookies one after another until she finds and a chocolate cookie. For
each cookie, the probability of the cookie being a chocolate cookie is 1

10 .
1. What is the probability that Alice eats more than 3 cookies?
2. Given that Alice has already eaten 5 cookies, and has not found a chocolate cookie, what

is the probability that she will eat at least 8 more cookies?

Solution:
1.

P(X > 3) =
∞∑
k=4

P(X = k)

=
∞∑
k=4

(
1− 1

10

)k−1( 1
10

)

=
(

1− 1
10

)3 ∞∑
j=1

(
1− 1

10

)j−1( 1
10

)

=
(

9
10

)3( 1
10

) 1
1− 9

10


=
(

9
10

)3
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2.

P(X ≥ 13|X > 5) = P(X > 12|X > 5)

= P(X > 12∩X > 5)
P(X > 5)

= P(X > 12)
P(X > 5)

=

(
9
10
)12

(
9
10
)5

=
(

9
10

)7

= P(X > 7)

Therefore, the fact that Alice has already eaten 5 cookies does not affect the probability of her
eating at least 8 more cookies.

�

Example 156. A test of weld strength involves loading welded joints until a fracture occurs. For
a certain type of weld, 80% of the fractures occur in the weld itself, while the other 20% occur
in the beam. A number of welds are tested. Let X be the number of tests up to and including
the first test that results in a beam fracture.

(a) Find P(X=3)
(b) Find the mean and variance of X

Solution: Answer: (a) 0.128 (b) 5, 20
(a)

P (X = 3) = (0.8)20.2
= 0.128

(b) X follows the geometric distribution: X ∼Geo(0.2)
E(X) = 1

0.2 = 5 V (X) = 1−0.2
0.22 = 20

�

4.4.4 Negative Binomial Random Variable
Here X is the number of Bernoulli trials required until the r-th success occurs.

X ∼ NB(r,p)

The PMF of X is

P(X = n) =
(
n−1
r−1

)
pr(1−p)n−r

E(X) = r/p

V(X) = rq/p2 0 5 10 15 20
0

0.2

0.4

x

PMF

p= 0.5, r = 1
p= 0.5, r = 5
p= 0.8, r = 5
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(r−1) events ∼ Bin(n−1,p) rth event at trial # x

trial #0 1 2 3 . . . . . . . . . x . . .

↓↓ ↓ ↓

The logic for the PMF is as follows. The last trial must necessarily result in a success (which
happens with probability p), and there must be r−1 success in the first n−1 trials (which happens
according to a Bin(n−1,p) random variable). Therefore, the probability distribution of X is

P(X = n) =
(
n−1
r−1

)
pr−1(1−p)n−r ·p

=
(
n−1
r−1

)
pr(1−p)n−r

Example 157. Find the expected value and variance of the number of time one must throw a die
until the outcome 1 has occurred four times.

Solution: Let X be the number of times the die must be thrown for 1 to occur four times.
Therefore,

X ∼ NB
(

4, 16

)

Therefore,

E[X] = r

p

= 4
1
6

= 24

V(X) = r(1−p)
p2

=
4
(
1− 1

6
)

(
1
6
)2

= 120

�

Fact 4.13 Let

Xi ∼Geo(p)

be independent random variables, for i ∈ N. Then,
n∑
i=1

Xi ∼ NB(n,p)

4.4.5 Hypergeometric Random Variable
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A hypergeometric experiment:
1. A sample of size n is randomly selected without replacement from a population of N items.
2. In the population, k items can be classified as successes, and N −k items can be classified

as failures.
Let X be the number of successes in the n trails:

X ∼ HG(n,N,k)

The probability distribution of X is

P(X = i) =

(
k
i

)(
N−k
n−i

)
(
N
n

)
E[X] = nk

N

V(X) = n
k

N

(
1− k

N

)(
N −n
N −1

)

Example 158. Suppose we randomly select 5 cards without replacement from an ordinary deck of
playing cards. What is the probability of getting exactly 2 red cards (i.e., hearts or diamonds)?

Solution: We know the following:
N = 52; since there are 52 cards in a deck.
k = 26; since there are 26 red cards in a deck.
n = 5; since we randomly select 5 cards from the deck.
i = 2; since 2 of the cards we select are red.

P(X = i) =

(
k
i

)(
N−k
n−i

)
(
N
n

) = 0.32513

�

Example 159. An extensive study undertaken by the National Highway Traffic Safety Adminis-
tration reported that 17% of children under 5 use no seat belt, 29% use adult seat belt, and 54%
use child seat. Set N1,N2,N3 for the number of children using no seat belt, adult seat belt, and
child seat, respectively. In a sample of 15 children under five. Find:

a) the probability that exactly 10 children use child seat?
b) the probability that exactly 10 children use child seat and 5 use adult seat?
c) the probability that exactly 8 children use child seat, 5 use adult seat and 2 use not seat

belt?
d) Cov(N1,N2).
e) Cov(N1,N2 +N3).

Solution: office hours :)
�
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4.5 Poisson Random Variables
A discrete random variable X, taking one of the values 0,1,2, . . . , is said to be a Poisson random
variable with parameter θ > 0 if:

X ∼ Poi(θ)

The PMF of X is

pX(x) = e−θθx

x!

and

E(X) = θ

V(X) = θ
0 10 20 30 40 50

0.00

0.05

0.10

0.15

x

PMF

θ = 5
θ = 10
θ = 20
θ = 30

Practical applications
The Poisson random variable has a very wide range of applications in a very diverse number of
areas such as physics, finance, biology, physics, and telecommunications. Extremely useful in
modeling situations consisting of a large number of independent trials with a consistent but very
small probability of occurrence.
The Poisson distribution has also been used to model a number of modern phenomena including:

1. internet traffic,
2. phone call arrivals, he number of telephone calls originating in a given locality during a certain

period;
3. scoring in sporting events
4. the number of particles emitted by a lump of radioactive material undergoing radioactive

decay during a certain period;
5. the occurrence of accidents at a given intersection over a certain period;
6. the breakdowns of a machine over a certain period of time;
7. the arrival of customers in a queue for service during a certain period.
In a Poisson Process events occur at a given rate

λ = number of events per unit of time

(or distance t, or area, or volume, or population, etc.). Then,

X = # of events in (0, t)
∼ Poi(λt),

Note that the Poisson parameter θ = λt has no units.

1st event

time0 tt1 t2 t3

↓ ↓ ↓
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Fact 4.14 — The Poi(θ) rv as a limit of a Bin(n,p). Let θ = np be fixed. Then the binomial PMF
tends to the Poisson PMF,

lim
n→∞

(
n

x

)
px(1−p)n−x = e−xθx

x!
This means that the Poisson distribution will be appropriate whenever the rv can be thought of
as a Bin(n,p) rv with large n and small p.

Therefore the Poisson distribution inherits the 2 important properties of the binomial distribution:
1. The normal approximation

X ∼N(θ,θ)
is accurate when θ it is large enough (by the CLT).

2. The sum of two Poisson random variables with parameters θ1 and θ2 is also Poisson:

if X1 ∼ Poi(θ1) and X2 ∼ Poi(θ2)→X1 +X2 ∼ Poi(θ1 + θ2)

Proof. Express the binomial probability in terms of the parameter θ:

lim
n→∞

(
n

x

)
px(1−p)n−x = lim

n→∞

(
n

x

)(
θ

n

)x(
1− θ

n

)n−x

= lim
n→∞

n!
x!(n−x)!θ

x

(
1
n

)x(
1− θ

n

)−x(
1− θ

n

)n

= θx

x! lim
n→∞

n!
(n−x)!

1
(n− θ)x

(
1− θ

n

)n

= θx

x! lim
n→∞

n!
(n−x)!

1
(n− θ)x

(
1− θ

n

)n
From calculus, we know that

lim
n→∞

(
1− θ

n

)n
= e−θ

and
lim
n→∞

n!
(n−x)!

1
(n− θ)x = lim

n→∞
n(n−1) . . .(n−x+ 1)

(n− θ)(n− θ) . . .(n− θ) = 1

�

The normal approximation as a function of θ:
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Example 160. Consider an experiment that consists of counting the number of α-particles given
off by a gram of radioactive material. If it is known that on average, 32 such α-particles are
emitted in 20 seconds, what is the probability that no more than 2 α-particles will be emitted
in two second?



4.5 Poisson Random Variables 163

Solution: Let X be the number of α particles emitted in two second. Here λ= 32/20 and t= 2s,
so the Poisson parameter

θ = λt= 3.2
Therefore,

X ∼ Poi(3.2)

and,

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)

= e−3.2θ0

0! + e−3.2θ1

1! + e−3.2θ2

2!
≈ 0.3799

�

Example 161. An LCD display has 1920×1080 pixels. A display is accepted if it has 15 or fewer
faulty pixels. The probability that a pixel is faulty from production is 5×10−5.
(a) Find the proportion of displays that are accepted.
(b) Find the pixel failure rate required to produce 4000×2000 pixel displays and still have an
acceptance rate of at least 90%.

Solution: Since there is a large number n of Bernoulli trials where the probability p of success is
small , we can use the Poisson random variable with parameter θ = np= 1920×1080×5×10−5 =
103.68.
X: number of pixels that are faulty
(a)

P (Accepted) = P (X ≤ 15)

=
15∑
x=0

θxe−θ

x!

=
15∑
x=0

(103.68)xe−103.68

x!
= 1.44×10−27

(b) Assume λ is the pixel failure rate required:

P (Accepted) = P (X ≤ 15)

=
15∑
x=0

(λt)xe−λt
x!

=
15∑
x=0

(λ×4000×2000)xe−λ×4000×2000

x!
= 0.9

λ = 1.39×10−6

�
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Example 162. Consider that earthquakes occur with the assumptions of Poisson distributions,
with λ= 2 earthquakes per week.

a) Find the probability that at least three earthquakes occur during the next two weeks.

Solution:
a) Let X be the number of earthquakes occurring in two weeks. Therefore,

X ∼ Poi(4)

Therefore,

P(X ≥ 3) = 1− (P(X = 0) + P(X = 1) + P(X = 2)
)

= 1−
e−440

0! + e−441

1! + e−442

21


= 1−13e−4

�

Example 163. Since 1851, exactly 116 hurricanes have hit Florida In 2005, Florida was hit by
four hurricanes: Cindy, Dennis, Katrina, and Wilma. If the probability of hurricane strikes has
remained the same since 1851, what is the probability of Florida being struck by four or more
hurricanes in the same year?

Solution:
This is a classic Poisson distribution. We’ve assumed that the probability of hurricane strikes
has remained the same (In reality, a bad assumption)., hence our rate is 116 hurricanes per
2016−1851 + 1 = 166 years. As the question asks about a year time frame, we have to adjust the
rate:

θ = 116
166 ×1.

Now, the probability of four or more hurricanes in the same year is

1−
3∑

k=0
P (X = k) = 1−

3∑
k=0

θke−θ

k! ≈ 0.005719 = 0.57%.

Notice that the return period of this event is 1/0.005719≈ 175: this is a “1 in 200 years” type of
event. �

Example 164. In the solutions manual to a Calculus textbook, there is about one faulty solution
per fifty questions. In a book with ten chapters, each with one hundred questions, what is the
probability that there are at least 15 faulty solutions in the whole book? Give your answer two
ways: first with a binomial distribution, then with a Poisson approximation. Use Wolfram Alpha
or some other tools to find both answers numerically, and compare them.

Solution: This is exactly a binomial distribution, and approximately a Poisson distribution.
A “success” is a faulty solution, hence p= 1/50 = 0.02. There are 1000 total problems, and so the
probability that at least 15 are faulty is

P (X ≥ 15) =
1000∑
k=15

(
1000
k

)(
1
50

)k(49
50

)1000−k
≈ 0.89747 = 89.7%.
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Using a Poisson approximation, the rate (which needs to have “per book” as its unit measurement)
is

θ = np= 20 (avg faulty solutions in 1 book).

Hence,

P (X ≥ 15) =
1000∑
k=15

θke−θ

k! = 0.89513 = 89.5%.

�

Example 165. — ** A structure is located in a region where tornado wind force must be consid-
ered in its design. Suppose that from the records of tornadoes for the past 20 years, the mean
occurrence rate of tornadoes in the region is once every 10 years. Assume that the occurrence
of tornadoes can be modeled as a Poisson process. The structure is designed to withstand a
tornado force with an allowable probability of damage of 5%. (10 points)
(a) What is the distribution (and parameter(s)) of Y = the number of times the structure is
damaged due to tornadoes in the next 50 years? Assume that if the structure is damaged it is
immediately retrofitted to its original condition.
(b) What is the probability that the structure will be damaged in the next 50 years? (10 points)
(c) Suppose that there are 100,000 similar structures in a country. Assuming statistical indepen-
dence among these structures, what is the distribution (and parameter(s)) of Z = the number of
structures in the country that suffer damage due to tornadoes in the next 50 years ? What is
P(Z<22,000)? (20 points)

Solution: Answer: (a) Pois(0.25) (b) 0.2212 (c) Bin(100000,0.2212), 0.1814

(a) The mean occurrence rate of tornado is 1
10 , and the structure is designed to withstand a

tornado force with an allowable probability of damage of 5%.
So we have:

λ = 1
10 ×5%

= 0.005
t = 50
θ = λt

= 0.005×50
= 0.25

Y ∼ Pois(0.25)

(b)

P (Y ≥ 1) = 1−P (Y = 0)
= 1− e−θ
= 1− e−0.25

= 0.2212
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(c) Z ∼Bin(100000,0.2212)
Use normal approximation:

E(Z) = np= 100000×0.2212 = 22120
V (Z) = npq = 100000×0.2212× (1−0.2212)

= 17727.056
σZ =

√
V (Z) = 131.252

P (Z < 22000) = Φ(22000−E(Z)
σZ

)

= Φ(−0.91)
= 0.1814

�

4.6 Exponential Random Variable
A random variable X is said to be a exponential random variable over the interval (0,∞),

X ∼ Expo(λ)

The PDF of X is

fX (x) =
λe−λx ; x≥ 0

0 ; x < 0

The CDF:

FX (x) =
1− e−λx ; x≥ 0

0 ; x < 0

and

E(X) = 1/λ
V(X) = 1/λ2

0 2 4
0

1

2

fX(x) = λe−λx

x

f X
(x

)

λ= 2
λ= 1
λ= 1

2

0 2 4
0

0.5

1

FX(x) = λe−λx

x

F
X

(x
)

Example 166. The number of major faults on a randomly chosen 1 km stretch of highway has a
Poisson distribution with mean 1.8. The random variable X is the distance (in km) between two
successive major faults on the highway.
Part a) What is the probability of having at least one major fault in the next 2 km stretch on
the highway? Give your answer to 3 decimal places. Part b) Which of the following describes
the distribution of X, the distance between two successive major faults on the highway?
Part c) What is the mean distance (in km) and standard deviation between successive major
faults?
A. mean = 3.6000; standard deviation = 3.6000 B. mean = 0.5556; standard deviation = 0.5556
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C. mean = 1.8; standard deviation = 1.8 D. mean = 0.5556; standard deviation = 0.3086 E.
mean = 0.2778; standard deviation = 0.2778 Part d) What is the median distance (in km)
between successive major faults? Give your answer to 2 decimal places. Part e) What is the
probability you must travel more than 3 km before encountering the next four major faults? Give
your answer to 3 decimal places. Part f) By expressing the problem as a sum of independent
Exponential random variables and applying the Central Limit Theorem, find the approximate
probability that you must travel more than 25 km before encountering the next 33 major faults?
Give your answer to 3 decimal places.

Solution:
�

Example 167. Assume the waiting time a customer in a restaurant is exponentially distributed
with an average wait time of 5 minutes. Find the probability that the customer will have to wait
no more than 10 minutes.

Solution: Let X be the the waiting time a customer spends in a restaurant, in minutes. Therefore,

X ∼ Expo(λ= 1/5)

Therefore,

P(X ≤ 10) = 1− e−10/5 = 0.864665

�

Fact 4.15 — Connection between the Expo(λ) and Poi(θ = λt) distributions. If

Y ∼ Poi(λt), # of events in (0, t)
X = time of first event

then, from the picture:

P(X > t) = P(Y = 0)

= e−λt(λt)0

0!
= e−λt

1st event

time0 t .

↓

Therefore,
X ∼ Expo(λ)

Fact 4.16 — The time between arrivals. of a Poisson process, Poi(λt) are independent, identically
distributed exponential random variables having mean 1/λ.

Fact 4.17 —Memoryless Property of the Exponential Distribution. Let t,s be positive real numbers
and X ∼ Expo(λ). Then

P (X > t+ s|X > t) = P (X > s)
= e−λs
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This means that, if t represents the present time, all that matters for a exponential rv is Y =
the remaining time s until the next event, which also has the Expo(λ) distribution. Also,

E(X|X > t) = E(Y ) = E(X) = 1/λ

Proof.

P (X > t+ s|X > t) = P ({X > t+ s}∩{X > t})
P (X > t) = P (X > t+ s)

P (X > t)

= e−λ(t+s)

e−λt
= e−λs = P (X > s)

�

STOP! The Expo(λ) and Geo(p) are the only memoryless distributions.

For any other distribution the conditional probability depends on the present time t. For
example, or the uniform distribution X ∼ U(0,1) where P (X > x) = 1−x in 0≤ x≤ 1 we have:

P (X > t+ s|X > t) = P (X > t+ s)
P (X > t) = 1− (t+ s)

1− t (4.16)

which depends on the present time t. Equation (4.16) implies that Y = {X|X > t} the remain-
ing time s until the next event has the U(0,1− t) distribution (why?), so:

E(X|X > t) = 1− t
2 6= E(X)

Example 168. A battery has a lifespan that is exponentially distributed with rate parameter
1/3000 per hour.

a) Find the probability that a random battery has a lifespan of more than 2500 hours.
b) Find the probability that a random battery has a lifespan of more than 2500 hours, given

that it has already worked for 2000 hours.

Solution: Let X be the battery lifespan in hours.
X ∼ Expo(λ= 1/3000)

a) Find the probability that a random battery has a lifespan of more than 2500 hours.

P(X ≥ 2500) = 1−FX (2500) = e−2500/3000 = 0.565
b) Find the probability that a random battery has a lifespan of more than 2500 hours, given

that it has already worked for 2000 hours.
According to Fact 4.17 all that matters for a exponential rv is the remaining time s until
the first success, which also has the Expo(λ) distribution. So,

P(X ≥ 2500|X > 2000) = P(X > 500) = 1−FX (500)
= e−500/3000 = 0.846
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�

Example 169. Below is the histogram of time between serious (magnitude at least 7.5 or over
1000 fatalities) earthquakes worldwide, recorded from 12/16/1902 to 3/4/1977:

0 500 1000 1500 2000
days0.0000

0.0005

0.0010

0.0015

0.0020

According to this data, the average time between serious earthquakes is 437 days. Assuming the
exponential distribution for the time between earthquakes:

a) if the last earthquake occurred four years ago, what is the expected time until the next
earthquake?

b) what is the probability of having 2 earthquakes in the next year?
c) if the last earthquake occurred four years ago, what is the probability of having 2 earthquakes

in the next year?

Solution: in class �

4.7 Gamma (Erlang) distributions are sums of exponentials
If X1,X2, . . . ,Xn are distributed as Expo(λ), independently, and

X =X1 + · · ·+Xn

then X ∼ Gamma(n,λ). In general, a random variable X is said to have a Gamma(α,β) distribution
when its pdf is

fX (x) = βα

Γ(α)x
α−1e−βx

for x > 0 and is 0 when x≤ 0. The parameter β = λ is called the rate parameter and Γ(a) is the
gamma function:

Γ(a) =
ˆ ∞

0
xa−1e−xdx.

The gamma function is a variant of the factorial function; we have Γ(n) = (n−1)! for any positive
integer n. If X ∼ Gamma(α,β) then

E(X) = α

β

V (X) = α

β2

More on Wikipedia
Online gamma distribution Calculator

https://en.wikipedia.org/wiki/Gamma_distribution
https://homepage.divms.uiowa.edu/~mbognar/applets/gamma.html
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Example 170. In Example 169:
a) what is the probability of having 2 earthquakes in the next year? (using Gamma)
b) what is the probability that the third earthquake happens after 10 years from now?

Solution: in class �

4.8 The beta distribution: finite interval sample space
A random variable X is said to have a beta distributionbeta distribution with parameters α and β
if its pdf is

fX (x) = Γ(α+β)
Γ(α)Γ(β)x

α−1(1−x)β−1

for 0< x < 1 and is 0 otherwise. We then write X ∼Beta(α,β), and
E(X) = α/(α+β)
V (X) = α+β+ 1

More on Wikipedia

4.9 The Bivariate Normal Distribution
Let X1 and X2 have the bivariate normal joint distribution. Then, the joint pdf of (X1,X2) is

fX(x) = 1
2π |V|1/2

exp
{
−1

2 (x−µ)T V−1 (x−µ)
}

where XT = (X1,X2), µT = (µ1,µ2) and V is a full rank variance-covariance matrix, i.e.,

Vij = Cov
(
Xi,Xj

)
V−1 is the inverse of V, |V| is the determinant of V.

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.2

0.4

fX(x) fY (y)

X Y

0

5 ·10−2

0.1

0.15

fX,Y (x,y)

https://en.wikipedia.org/wiki/Beta_distribution
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Fact 4.19 — Marginal distributions are normal. If (X1,X2) have a bivariate normal distribution,
then the marginal distribution of X2 is also normal with mean µ2 and variance σ2

2.

Fact 4.20 — Conditional distributions are normal. If (X1,X2) have a bivariate normal distribution,
then the conditional distribution of X2|X1 = x1 is also normal with mean and variance given by

E(X2|X1 = x1) = µ2 +ρ
σ2
σ1

(x1−µ1) . (4.17)

V(X2|X1 = x1) = (1−ρ2)σ2
2. (4.18)

Fact 4.21 If (X1,X2) have a bivariate normal distribution with ρ= 0, X1 and X2 are independent.

Multi-variate normal distribution
The random vector XT = (X1, ...,Xn) has the multivariate normal distribution if its joint density
function is given by

f(X) = 1
(2π)n/2 |V|1/2

exp
{
−1

2 (x−µ)T V−1 (x−µ)
}
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where µT = (µ1, ...,µn) and V is a full rank variance-covariance matrix. Note that for n= 2 we get
the density of the bivariate normal distribution.



5. Function of Random Variables

5.1 One Random Viable
We are interested in the distribution of

Y = g(X) (5.1)

when the distribution of X is known.
If we only need E(Y ) and V (Y ). It is not necessary to calculate the distribution of Y :

E(Y ) = E[g(X)] =
´
g(x)fX (x)dx

V (Y ) = E[g(X)2]− [E[g(X)]2

STOP! E(Y ) = E(g(X)) 6= g(E(X)).

naïve approach: g(E(X))
correct approach: E(g(X)).

Example 171. X has the following distribution.

P(X =−1) = 0.2
P(X = 0) = 0.5
P(X = 1) = 0.3

Find the distribution of Y =X2.
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Solution: Let

Y =X2

Using option one above, we have

P(Y = 0) = P(X2 = 0)
= P(X = 0)
= 0.5

P(Y = 1) = P(X2 = 1)
= P(X =−1) + P(X = 1)
= 0.5

�

Example 172. The probability density function of X is given by the Uniform distribution in (0,
1):

fX (x) =
1 ; 0≤ x≤ 1

0 ; otherwise

Find the distribution of Y = eX .

Solution: Let Y = eX . Therefore,

FY (y) = P(Y ≤ y) = P
(
eX ≤ y

)
= P(X ≤ logy) = FX (logy)

=
logyˆ

−∞

fX (x)dx=
logyˆ

0

dx= logy

Therefore, differentiating,

fY (y) = dFY (y)
dy = d logy

dy = 1
y

�

5.1.1 Single Discrete Random Variable
If the function g(X) is monotonic then, the recipe is

pY (y) =
pX (g−1(y)) if g−1(y) ∈ SX

0 otherwise
(5.2)
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Y  1 - ⅇ
-X2

X

Y

E[X]

E[Y]

1 2 3 4 5

1

2

3

4
5

P(Y=y)

P(X=x)

Notice from the figure that:

SY = {y1,y2 . . .y5}

P (Y = yi) = P (X = xi), i= 1,2, . . .5
xi = g−1(yi) =−2log(1−yi)
P (Y = yi) = P (X = g−1(yi))

or,

pY (yi) = pX (g−1(yi))

Notice: E(g(X))< g(E(X))
(always true for concave functions)

Y 
1

X

X

Y

E[X]

E[Y]

1 2 3 4 5

1

2

3
4
5

P(Y=y)

P(X=x)

From the figure for g(X) = 1/X:

SY = {y1,y2 . . .y5}

P (Y = yi) = P (X = xi), i= 1,2, . . .5
xi = g−1(yi) = 1/yi
P (Y = yi) = P (X = g−1(yi))

or,

pY (yi) = pX (g−1(yi))

Notice: E(g(X))> g(E(X))
(always true for convex functions)

Y  X3
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Y

E[X]

E[Y]
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P(Y=y)

P(X=x)

From the figure for g(X) =X3:

SY = {y1,y2 . . .y10}

P (Y = yi) = P (X = xi), i= 1,2, . . .10
xi = g−1(yi)
P (Y = yi) = P (X = g−1(yi))

Therefore,

pY (yi) = pX (g−1(yi))
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Notice: E(g(X))> g(E(X))
When g(x) is linear, the shape of the distribution remains the same:

Y  8 - X

X

Y

E[X]

E[Y]

1 2 3 4 5

1

2

3

4

5

P(Y=y)

P(X=x)

For non-monotonic functions, suppose the
solution of y = g(x) has k roots: x∗1, x∗2, ..., x∗k.
Therefore,

pY (y) = P (X = x∗1)∪P (X = x∗2)∪ ...∪P (X = x∗k)

=
k∑
i=1

P (X = x∗i )

In the figure, x∗1 =√y and x∗2 =−√y.

SY = {y1,y2 . . .y4}

pY (yi) = pX (√yi) +pX (−√yi), i= 1,2,3
pY (y4) = pX (0)

Notice: E(g(X))> g(E(X))

In this case this is the worst case scenario because the na approach gives g(E(X)) = 0, which is far
different from the correct approach of calculating E(g(X)).
From the above figures we have clarified the following important inequalities,

Jensen’s inequalities :
If g(X) is convex then:

E(g(X))≥ g(E(X))
If g(X) is concave then:

E(g(X))≤ g(E(X))
If g(X) is linear then:

E(g(X)) = g(E(X))
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Example 173. Given X ∼ Bin(n,p) and Y = eX . What is the distribution of Y, pY (y)?

Solution: The recipe:

pY (y) =
pX (g−1(y)) if g−1(y) ∈ SX

0 otherwise

Here, x= g−1(y) = logy and pX (x) =
(
n
x

)
px(1−p)n−x, so:

pY (y) =

(

n
logy

)
(p)logy(1−p)n−logy when logy is an integer

0 otherwise

Note: SY = {1, e,e2, ..., en}
�

Example 174. X ∼ Bin(n,p) and Y =X2. What is the distribution of Y, pY (y)?

Solution: x = g−1(y) == ±√y, so x∗1 = √y and x∗2 = −√y. In this case x∗2 /∈ SX because it is
negative, and therefore

pY (y) =


(
n√
y

)
(p)
√
y(1−p)n−

√
y when √y is an integer

0 otherwise

�

5.1.2 Single Continuous Random Viable
Here Y = g(X) is a monotone function and fX (x) is known. The PDF fY (y) is

fY (y) = fX

(
g−1(y)

)∣∣∣∣∣ ddyg−1(y)
∣∣∣∣∣ (5.3)

The derivation is analogous to the discrete case, where the key idea was P (Y = y) = P (X = g−1(y)).
In the continuous case this reads:

fY (y) dy = fX

(
g−1(y)

)
dx

and from the figure seen in class

dx=
∣∣∣∣∣ ddyg−1(y)

∣∣∣∣∣dy
which establishes the result.
Notice how the shape of fY (y) changes due to Y = g(X):
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Y 
1

X

P(Y=y)

P(X=x)
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Y

E[X]

E[Y]
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3 X

P(Y=y)

P(X=x)

X

Y

E[X]

E[Y]

g(E[X])
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Y  X3

P(Y=y)

P(X=x)

X

Y

E[X]

E[Y]

g(E[X])

Example 175. Y = eX , X ∼N(µ,σ2). Find fY (y).

Solution:

fX (x) = 1
σ
√

2π
e
−(x−µ)2

/
2σ2

fY (y) = fX (g−1(y))
∣∣∣∣∣∣dg
−1

dy

∣∣∣∣∣∣
Since Y = eX = g(x), g−1(y) = log(y), and

∣∣∣∣dg−1

dy

∣∣∣∣ = 1
y . Therefore,

fY (y) = 1
yσ
√

2π
e
−(logy−µ)2

/
2σ2

which corresponds to the lognormal distribution, Y ∼ LN(µ,σ2). �

Example 176. Y = 3eX , X ∼ Expo(λ). Find fY (y).

Solution:

fX (x) = λe−λx

fY (y) = fX (g−1(y))
∣∣∣∣∣∣dg
−1

dy

∣∣∣∣∣∣
Since Y = 3eX = g(x), g−1(y) = log(y/3), and

∣∣∣∣dg−1

dy

∣∣∣∣ = 3
y . Therefore,

fY (y) = 3
y
λe−λ log(y/3) = 3λ+1λy−λ−1

which corresponds to the ?? �
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Example 177. Let the random variable X be exponentially distributed with mean 2. You are
interested in Y = e−2X . Find fY (y).

Example 178. The absolute velocity (X) of particles in a gas follows a Maxwell distribution,
with the PDF

fX(x) =


4x2

a3√π exp(−x2

a2 ), x > 0
0, otherwise

where a is a constant. Determine the PDF fY (y) for the particle kinetic energy Y = 1
2mX

2,
where m is the mass of a particle.

Solution: Answer:

g(X) = 1
2mX

2

g−1(y) = ±
√

2y
m∣∣∣∣∣∣dg

−1

dy

∣∣∣∣∣∣ = 1√
2my

fY (y) = fX (
√

2y
m

) 1√
2my +fX (−

√
2y
m

) 1√
2my

= fX (
√

2y
m

) 1√
2my + 0

= 8

a3
√

2πm3
y

e
− 2y
my2 ,y > 0

�

5.2 Two Random Viables
Here

Z = g(X,Y )

When X,Y are discrete, assuming pX,Y is known:

pZ (z) =
∑

all (x,y): z=g(x,y)
pX,Y (x,y)
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If the function g(X,Y ) is monotone:

pZ (z) =
∑
x∈SX

pX,Y (x,g−1) with: g−1 = g−1(x,z) or:

=
∑
y∈SY

pX,Y (g−1,y) with: g−1 = g−1(y,z)

Example 179. Suppose Z=X+Y where X∼ Poi(λ), Y∼ Poi(µ) and X and Y are independent.
What is the pZ (z) ?

Solution: Given: pX (x)=λx

x! e
−λ and pY (y) = µy

y! e
−µ

pZ (z) =
∑

all (x,y): z=x+y
pX,Y (x,y)

=
∑
x∈SX

pX,Y (x,g−1) with: g−1 = g−1(x,z) = z−x

=
z∑

x=0
pX (x) ·pY (z−x)

=
z∑

x=0

λx

x!
µz−x

(z−x)!e
−(λ+µ)

= e−(λ+µ)
z∑

x=0

λxµz−x

x!(z−x)!

= (λ+µ)z
z! e−(λ+µ)

= Poi(λ+µ)

�

When X,Y are continuous, assuming fX and fY are known:

fZ(z) =
ˆ ∞
−∞

fX,Y

(
g−1,y

)∣∣∣∣∣ ∂∂z g−1
∣∣∣∣∣dy with: g−1 = g−1(z,y)

Alternatively, we can also use

fZ(z) =
ˆ ∞
−∞

fX,Y

(
x,g−1

)∣∣∣∣∣ ∂∂z g−1
∣∣∣∣∣dx with: g−1 = g−1(x,z)

Example 180. Suppose Z=X+Y where X∼Exp(λ), Y∼Exp(µ) and X and Y are independent.
What is fZ (z)?

Solution: Given: fX (x) = λe−λx and fY (y) = µe−µy

Since we know:

fZ(z) =
ˆ ∞
−∞

fX,Y (g−1,y)
∣∣∣∣∣∣dg
−1

dz

∣∣∣∣∣∣dy with g−1 = g−1(z,y)
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Since X and Y are independent:

fX,Y (x,y) = fX ·fY = λµe−λx+µy.

To obtain
∣∣∣∣dg−1

dz

∣∣∣∣, we let x= g−1 = z−y. Therefore:
∣∣∣∣∣∣dg
−1

dz

∣∣∣∣∣∣=
∣∣∣∣∣ ddz (z−y)

∣∣∣∣∣= |1|= 1

and

fX,Y (g−1,y) = λµe−(λ(z−y)+µy)dy

Therefore, fZ(z) can be calculated as (from the figure seen in class):

fZ(z) =
ˆ z

0
fX,Y (z−y,y)

∣∣∣∣∣∣dg
−1

dz

∣∣∣∣∣∣dy
= λµe−λz

ˆ z

0
e−y(µ−λ)dy

= λµ

µ−λ(e−λz− e−µz)

Note: If X and Y have the same rate, it would be a Gamma (Erlang) distribution. �

Example 181. Suppose Z =X ·Y where X∼Exp(λ), Y∼Exp(µ) and X and Y are independent.
What is fZ (z)?

Solution:

y = z

x
,

∣∣∣∣∣∣dg
−1

dz

∣∣∣∣∣∣= 1
x

fZ (z) =
ˆ ∞

0
λµe−(λx+µ zx ) 1

x
dx

�

Example 182. Suppose Z=X+Y where X∼N(µX ,σX), Y∼N(µy,σy) and X and Y are independent.
Show that:

Z ∼N(µX +µy,σ
2
X +σ2

y)

5.2.1 What if the distribution of X is unknown? (not covered)
If we only only know E(X) = µ and V(X) = σ2, we can still approximate E(Y ) and V(Y ) by Taylor
Series around the mean of X:

Y = g(X)≈ g(µ) + (X−µ)g′(µ) + 1
2(X−µ)2g′′(µ) + . . .
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2nd-order approximation for E[Y]:

E(Y )≈ g(µ) + 1
2g
′′(µ)σ2 (5.4)

1st-order approximation for V[Y]:

V(Y )≈ g′(µ)2σ2 (5.5)

Several random variables
Let Y = g(X1,X2, . . .Xn) and recall the vector notation:

X = (X1,X2, . . .Xn)T

The joint PMF is not known; all we know are:
E(Xi) = µi , V(Xi) = σ2

i , Cov(Xi,Xj) = σij

and µ = {µ1,µ2, . . .µn}. A second-order Taylor series expansion of the scalar-valued function g(·)
can be written compactly as

g(X) = g(µ) + (X−µ)TG+ 1
2!(X−µ)TH(X−µ) + · · ·

where G and H are the gradient vector and the Hessian matrix of g evaluated at X) = µ, resp.
2nd-order approximation for E(Y ):

E(Y )≈ g(µ) + 1
2eT (ΣX�H)e

= g(µ) + 1
2

n∑
i=1

n∑
j=1

σij ·
 ∂2g

∂Xi∂Xj


= g(µ) + 1

2

n∑
i=1

σ2
i ·
 ∂2g

∂X2
i

+
n∑
i=1

n∑
j=i+1

σij ·
 ∂2g

∂Xi∂Xj


︸ ︷︷ ︸

0 if Xi’s are independent

(5.6)

where e is the column vector whose entries are all 1’s, and � is the Hadamard product, which
takes two matrices of the same dimensions and produces another matrix where each element i, j is
the product of elements i, j of the original two matrices. It should not be confused with the more
common matrix product.
1st-order approximation for V(Y ):

V(Y )≈GTΣXG

=
n∑
i=1

σ2
i ·
(
∂g

∂Xi

)2 (5.7)
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Example 183. — * The hydraulic head loss in a pipe may be determined by the Darcy-Weisbach
equation as follows:

H = fLV 2

2Dg

where:
L=length of a pipe, V=flow velocity of water in a pipe, D=pipe diameter, f=coefficient of
friction, g=gravitational acceleration=32.2 ft/sec2. Suppose a pipe has the following properties:

i Xi µi δi
1 L 100. 0.1
2 D 1. 0.1
3 f 0.02 0.2
4 V 10. 0.15

(a) Approximate the mean and standard deviation of the hydraulic head loss of the pipe.

Solution: (a) We have:

Xi µi σi
1 L 100. 10.
2 D 1. 0.1
3 f 0.02 0.004
4 V 10. 1.5

G =



fV 2

2Dg
−fLV 2

2D2g
LV 2

2Dg
fLV
Dg

 and H =


0 − fV 2

2D2g
V 2

2Dg
fV
Dg

− fV 2

2D2g
fLV 2

D3g − LV 2

2D2g −
fLV
D2g

V 2

2Dg − LV 2

2D2g 0 LV
Dg

fV
Dg −fLV

D2g
LV
Dg

fL
Dg

 , evaluating at µ gives:

G =


0.031
−3.106
155.28
0.621

 and H =


0. −0.03 1.55 0.01
−0.03 6.21 −155.28 −0.62
1.55 −155.28 0. 31.06
0.01 −0.62 31.06 0.06


and the mean and variance of H are approximately:

E(H) = g(µ) + 1
2

n∑
i=1

σ2
i ·
 ∂2g

∂X2
i


= 0.02×100×102

2×1×32.2 + 1
2(6.21×0.01 + 0.06×2.25)

= 3.20652
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V(H) =
n∑
i=1

σ2
i ·
(
∂g

∂Xi

)2

= 0.000961×100.+ 9.64724×0.01 + 24111.9×0.000016 + 0.385641×2.25
= 1.44605

�

Example 184. Refer to example 183 and assume that the correlation between D and f is 0.7 and
between V and f , 0.4. Show that the expected value and variance of H are now 3.237 and 1.639,
respectively.

Solution: Hint:

E(H) = 0.02×100×102

2×1×32.2 + 1
2(−155.28σ2,3−155.28σ3,2 + 31.056σ3,4 + 31.056σ4,3+

+ 6.211σ2
2 + 0.062σ2

4)
V(H) =−3.106

(
155.28σ3,2−3.106σ2

2
)

+ 0.621
(
155.28σ3,4 + 0.621σ2

4
)

+

+ 155.28
(
−3.106σ2,3 + 0.621σ4,3 + 155.28σ2

3
)

+ 0.000961σ2
1

�

5.3 Important distributions for statistics
5.3.1 The chi-square distribution with r degrees of freedom

The density function is given by:

fχ2(x) = 2−r/2e−x/2x r2−1

Γ
(
r
2
) , x > 0.

and

E (X) = r

V (X) = 2r

Chi-Sqr probability tables.

https://people.smp.uq.edu.au/YoniNazarathy/stat_models_B_course_spring_07/distributions/chisqtab.pdf
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It is important because:

Fact 5.5 If Y1, Y2 , . . . ,Yr are independent standard normal random variables, Yi ∼N(0,1), then
r∑
j=1

Y 2
j ∼ χ2(r).

Fact 5.6 If X ∼N(0,1),then Y =X2 ∼ χ2(1).

Proof Let Y =X2. Then, using the techniques in this chapter

fY (y) = 1
2√y

(
fX

(√
y
)

+fX

(
−√y

))
= 1√

2πy e
− 1

2y, y > 0.

�

Fact 5.7 If Y1 ∼ χ2(r) and Y2 ∼ χ2(s) , and are independent, then

Y1 +Y2 ∼ χ2(r+ s).

5.3.2 Student’s t-distribution
If U ∼N (0,1) and V ∼ χ2(r) are independent, then

T = U√
V/r
∼ t(r)
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has a t-distribution with r degrees of freedom:

fT (t) =
Γ
(
r+1

2
)

√
(πr)Γ

(
r
2
)
1 + t2

r

−
r+1

2

, t ∈ R.

and:

E(T ) = 0

V(T ) = r/(r−2), r > 2
Note, as r→∞ then t(r)→ N(0,1) .

t-distribution tables.

http://www.math.odu.edu/stat130/t-tables.pdf
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6. Normal Random Samples

Statistical theory for random samples drawn from normal distributions is very important, partly
because a great deal is known about its various associated distributions and partly because the
central limit theorem suggests that for large samples a normal approximation may be appropriate.

The basic assumption in statistic is that the
random variable of interest, X, is distributed
across a population according to a known
distribution, typically Normal(µ,σ2).

Parameters µ and σ2 are unknown. Statistics
is all about estimating them using a sample, eval-
uating the potential errors when the sample is
small, testing hypotheses and making predictions
using the available data.

Random sample. A sample of size n is a realization x = (x1, . . . ,xn) of the random vector:

X = (X1, . . . ,Xn)

which we call a random sample in this chapter. We assume X1, . . . ,Xn to be independent and
identically distributed (iid) Normal random variables having expected value µ and variance σ2,
denoted as:

Xi
iid∼ N(µ,σ2), i= 1,2 . . .n. (6.1)
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Sample mean and sample variance

X̄ = 1
n

n∑
i=1

Xi The sample mean is the “best” estimator of µ

∼ N
µ, σ2

n

 and is normally distributed.

and

S2 = 1
n−1

n∑
i=1

(
Xi− X̄

)2
The sample variance, “best” estimator of σ2

= 1
n−1


 n∑
i=1

X2
i

−nX̄2

 (shortcut formula)

Proof. (Shortcut formula for S2)

(n−1)S2 =
n∑
i=1

(
Xi− X̄

)2
=

n∑
i=1

(
X2
i + X̄2−2XiX̄

)

=
n∑
i=1

X2
i +

n∑
i=1

X̄2−2X̄
n∑
i=1

Xi

=
n∑
i=1

X2
i +nX̄2−2X̄(nX̄)

=
n∑
i=1

X2
i +nX̄2−2nX̄2

=
n∑
i=1

X2
i −nX̄2

Therefore,

S2 = 1
n−1

(
n∑
i=1

X2
i −nX̄2

)

�

STOP! Law of large numbers: Since X̄ ∼N
(
µ,
σ2

n

)
then

X̄→ µ as n→∞
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The standard error is the standard deviation of the sample mean:
SE = σ/

√
n or s/

√
n if σ is unknown.

Example 185. The times between successive of vehicles arrivals at a toll booth were observed as
follows:

{1.2,3.0,6.3,10.1,5.2,2.4,7.1} in sec

(a) Find the sample mean
(b) Find the sample variance and the standard error

Solution: (a)

x̄ = 1.2 + 3.0 + 6.3 + 10.1 + 5.2 + 2.4 + 7.1
7

= 5.04

(b)

s2 =
∑7
i=1(xi− x̄)2

7−1
= 9.56

SE = s√
n

= 1.17

�

6.1 Theoretical building blocks
6.1.1 The Z,T and C2-statistics

The standardized version of X̄ is the Z-statistic:
The Z-statistic

Z = X̄−µ
σ/
√
n
∼N (0,1)

Proof: By the CLT
We could use the Z-statistic to calculate a range of plausible values for µ, under the assumption
that σ2 is known. But the variance σ2 is unknown in practice. We need to find another
statistic for the mean µ which does not contain the unknown variance parameter. It turns out that
if we replace σ by S, then the distribution of the resulting statistics has the t-distribution.

STOP! The problem with the Z-statistic is that in practice the variance σ2 is not known.

Solution: use S2 instead.
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Fact 6.1 — The Chi-square distribution with r degrees of freedom, χ2
r. If Y1, Y2 , . . . ,Yr are inde-

pendent standard normal random variables, Yi ∼N(0,1), then
r∑
j=1

Y 2
j ∼ χ2

r.

Additive property: If Y1 ∼ χ2
r and Y2 ∼ χ2

s , and are independent, then

Y1 +Y2 ∼ χ2
r+s

Chi-Sqr probability tables.

The C2 statistic

C2 = (n−1)S2

σ2 ∼ χ2
n−1

Proof.

(n−1)S2 =
n∑
i=1

(
Xi− X̄

)2
=

n∑
i=1

(
(Xi−µ)− (X̄−µ)

)2

=
n∑
i=1

(Xi−µ)2−n
(
X̄−µ

)2

Dividing by σ2,

(n−1)S2

σ2 =
n∑
i=1

(
Xi−µ
σ

)2
−n

X̄−µ
σ

2

=
n∑
i=1

(
Xi−µ
σ

)2

︸ ︷︷ ︸
∼χ2

n

−
X̄−µ
σ/
√
n

2

︸ ︷︷ ︸
∼χ2

1

By the additive property of the chi-square distribution in Fact (6.1) the result follows. �

Fact 6.2 — Student’s t-distribution. If U ∼N (0,1) and V ∼ χ2
r are independent, then

T = U√
V/r
∼ tr

has a t-distribution with r degrees of freedom.

t-distribution tables.

One of the key results for normal random samples is the independence of X̄ and S2, and their
relationship to the mean and variance parameters of a normal distribution.

http://kisi.deu.edu.tr/joshua.cowley/Chi-square-table.pdf
http://www.math.odu.edu/stat130/t-tables.pdf
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Fact 6.3 — Independence of X̄ and S2 for normal samples.. If X1, X2 , . . , Xn are independent,
identically distributed random variables with normal distribution N

(
µ,σ2

)
, then X̄ and S2 are

independent, and:

(i) X̄ ∼N
µ, σ2

n


(ii) (n−1)S2

σ2 ∼ χ2
n−1

Proof (Optional) There are various methods of proof. We will use one which delivers both
independence and distribution within the same argument.

Xi ∼N
(
µ,σ2

)
=⇒ Zi = Xi−µ

σ
∼N (0,1)

Now, we know that, if Z is a vector of normal random variables and L is a linear transformation,
then Y = LZ is also a vector of normal random variables. Suppose that L is orthogonal so that
LTL = I. Then

YTY = ZTLTLZ = ZTZ or
n∑
i=1

Y 2
i =

n∑
i=1

Z2
i .

Thus, the Yi variables are also independent and distributed as N (0,1).
Now suppose we choose L such that its first row is(

1√
n
,

1√
n
, . . . ,

1√
n

)
.

Then Y1 = 1√
n

∑n
i=1Zi =

√
nZ̄ , and

n∑
i=1

(
Zi− Z̄

)2
=

n∑
i=1

Z2
i −nZ̄

2 =
n∑
i=1

Y 2
i −Y 2

1 =
n∑
i=2

Y 2
i ,

which is independent of Y1. Thus
n∑
i=1

(
Zi− Z̄

)2
is independent of Z̄ ⇒

n∑
i=1

(
Xi− X̄

)2
is independent of X̄

since Zi = Xi−µ
σ

. The independence of X̄ and S2 is therefore proved.

(i) Y1 ∼N (0,1) ⇒ √
nZ̄ ∼N (0,1) ⇒ √

n

(
X̄ −µ

)
σ

∼N (0,1) ⇒ X̄ ∼N
(
µ,σ2/n

)
;

(ii) From Theorem 6.1,

n∑
i=2

Y 2
i ∼ χ2 (n−1) ⇒

∑n
i=1

(
Xi− X̄

)2

σ2 ∼ χ2 (n−1)

⇒ (n−1)S2

σ2 ∼ χ2(n−1).

�
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The T-statistic

T = X̄ −µ
S/
√
n
∼ tn−1

Proof Recall that:

Z = X̄ −µ
σ/
√
n
∼N (0,1) , C2 = (n−1)S2

σ2 ∼ χ2
n−1

which are independent since X̄ and S2 are independent. It turns out that T can be expressed as:

T = Z√
C2/(n−1)

which corresponds to the definition of the t-distribution with n−1 degrees of freedom!

6.1.2 Estimators
Parameters µ and σ2 are unknown, so how can we estimate them?

Suppose we have a random sample X = X1,X2, . . . ,Xn drawn from a distribution with some
parameter θ.

Estimators An estimator θ̂ of θ is a function of the observed data which (we hope) forms a
useful approximation of the parameter:

θ̂ = g(X1,X2, . . . ,Xn).

Note that θ̂ :
1. can depend only on the observed data, and not on any unknown parameters,
2. is itself a random variable, with a distribution, mean, variance, etc.

Examples of estimators are the sample mean and sample variance. The estimator is a function of
random variables, so If the estimator is to have any use at all, it should have some nice properties.
For example, we know that X̄→µ by the law of large numbers, ensuring that X̄ is a sensible
estimator for µ.

Desirable properties of a “good” estimators
Unbiased: θ̂ is said to be unbiased if

E
(
θ̂
)

= θ,

Consistency: θ̂ is said to be consistent if θ̂→θ as n→∞

Efficiency (Minimum variance): θ̂A is said to be more efficient than θ̂B if

V
(
θ̂A
)
< V

(
θ̂B
)

Even if we assume unbiasedness and consistency to be desirable, it is possible to have more than
one such estimator.
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Example 186. — Show that X̄ and S2 are unbiased

E
(
X̄
)

= E
 1
n

n∑
i=1

Xi

= 1
n

n∑
i=1

E(Xi) = 1
n

n∑
i=1

µ

= µ

Now for S2,

(n−1)S2 =
n∑
i=1

(
Xi− X̄

)2
=

n∑
i=1

(
(Xi−µ)− (X̄−µ)

)2

=
n∑
i=1

(Xi−µ)2 −n
(
X̄−µ

)2

Therefore,

E
[
(n−1)S2

]
= E

 n∑
i=1

(Xi−µ)2
−nE

[(
X̄−µ

)2]

=
n∑
i=1

V(Xi)−nV
(
X̄
)

= nσ2−nσ
2

n
= (n−1)σ2

Therefore,

E
(
S2
)

= σ2

which means that S2 is unbiased.

6.2 Confidence intervals
Let X = (X1,X2, . . .Xn) represent a random sample, and x a realization. If

(
a(X), b(X)

)
is a

random interval such that

P
(
a(X)< θ < b(X)

)
= 1−α,

then a realization of that interval,
(
a(x), b(x)

)
is said to be a 100(1−α)% confidence interval

for the parameter θ.

Interpretation of confidence intervals It is not easy to get to grips with what is meant by a
confidence interval. One cannot say:

“the parameter µ has probability (1−α) of lying within the calculated interval
(
a(x), b(x)

)
"

because that statement has no random variables. Since the ends of the interval are fixed numbers,
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as is θ, and without random variables being present, probability statements cannot be made:
either θ lies between the two numbers or it doesn’t, and we have no way of knowing which.
The only viable interpretation is to say that we have used a procedure which, if repeated
over and over again, would give intervals containing the parameter 100(1−α)% of the time.

Critical value zα. The symbol zα is the (1−α)−percentile of Z. Note that since the N(0,1) is
symmetric with respect to zero, so:

z1−α =−zα

−6 −4 −2 0 2 4 6
0

0.2

0.4

zα = 1.645
1−α = 0.95

N(0,1)

z

The most common value of α in use is 0.05, in which case:

zα = z0.05 = 1.654, zα/2 = z0.025 = 1.96

6.2.1 Confidence intervals for µ
Two-sided 100(1−α)% confidence intervals. Since Z ∼N(0,1), and the definition of critical
values zα/2, it follows that

P
(
−zα/2 ≤ Z ≤ zα/2

)
= 1−α.

−6 −4 −2 0 2 4 6
0

0.2

0.4

−zα/2 =−1.96 zα/2 = 1.96
1−α = 0.95

z
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Since Z =

(
X̄ −µ

)
σ/
√
n

, then

P

−zα/2 ≤
(
X̄ −µ

)
σ/
√
n
≤ zα/2

 = 1−α

=⇒ P

(
X̄ − zα/2

σ√
n
≤ µ≤ X̄ + zα/2

σ√
n

)
= 1−α.

Hence the appropriate random interval is(
X̄ − zα/2

σ√
n
, X̄ + zα/2

σ√
n

)
, whose realization gives:

Confidence interval for µ when σ is known The 100(1−α)% confidence interval is(
x̄− zα/2

σ√
n
, x̄+ zα/2

σ√
n

)
.

The margin of error is the half-width, h, of the confidence interval:

h= zα/2
σ√
n

If we solve for n in the above equation we obtain:
Sample size needed for a prescribed margin of error h:

n=
(σzα/2

h

)2

Example 187. The times between successive arrivals of vehicles at a toll booth were observed as
follows:

{1.2,3.0,6.3,10.1,5.2,2.4,7.1} in sec

a) Find the sample mean and the sample standard deviation.

b) Find the 95%-confidence interval for µ when σ is assumed to be equal to the sample
standard deviation.

c) Find the margin of error.
d) Find the sample size needed to reduce the margin of error by a factor of two.

Solution:
a) Find the sample mean and the sample standard deviation.

x̄= 5.04, s=
√

9.56 = 3.1
b) Find the confidence interval for µ when σ is assumed to be equal to the sample standard

deviation.(
x̄− zα/2

σ√
n
, x̄+ zα/2

σ√
n

)
=
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c) Find the margin of error.
h= zα/2

σ√
n

=

d) Find the sample size needed to reduce the margin of error by a factor of two.

n=
(σzα/2

h

)2
=

�
Recall that the only viable interpreta-
tion of confidence intervals is to say that
we have used a procedure which, if repeated
over and over again, would give intervals
containing the parameter 100(1−α)% of
the time.
This is shown in the figure, we were re-
peated the following procedure 100 times:

1. take a sample of size n= 7: in Excel
we generate seven random numbers
from the N(µ= 50,σ2 = 10) distribu-
tion.

2. compute the confidence interval with
the above recipe

3. plot all these intervals next to each
other

→ See and modify this chart in Excel

STOP! Unfortunately we do not know σ, so what should we do?

→ We replace σ by s, which boils down to replacing the Z-statistic with the T -statistic. Writing
tα/2 for the critical values from the distribution tn−1, we have

P

−tα/2 <
(
X̄ −µ

)
S/
√
n

< tα/2

= 1−α.

Re-arranging gives the random interval(
X̄ − tα/2

s√
n
, X̄ + tα/2

s√
n

)
,

and the 100(1−α)% confidence interval is a realization of this interval.
Confidence interval for µ when σ is unknown The 100(1−α)% confidence interval is(

x̄− tα/2
s√
n
, x̄+ tα/2

s√
n

)
.

In some circumstances, it can make more sense to express the confidence interval in only one
direction – to either the lower or upper confidence limit.

https://gtvault-my.sharepoint.com/:x:/g/personal/jlaval3_gatech_edu/Eb31xTa9Z5ZFin7Y9zf6SHMB0-LdOPU5Jm7HxIrmCZzlQg?e=GYaH36
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One-sided CIs for µ when σ is unknown :
1. The 100(1−α)% lower confidence interval is(

−∞, x̄+ tα
s√
n

)
, Note: x̄+ tα

s√
n
is an upper bound.

2. The 100(1−α)% upper confidence interval is(
x̄− tα

s√
n
,∞

)
, Note: x̄− tα s√

n
is a lower bound.

Example 188. The times between successive arrivals of vehicles at a toll booth were observed as
follows:

{1.2,3.0,6.3,10.1,5.2,2.4,7.1} in sec

a) Find the sample mean and the sample standard deviation.

b) Find the 95%-confidence interval for µ.
c) Find a margin of error.
d) Find the sample size needed to reduce the margin of error by a factor of two.

Solution:
a) Find the sample mean and the sample standard deviation.

x̄= 5.04, s=
√

9.56 = 3.1
b) Find the confidence interval for µ.(

x̄− tα/2
s√
n
, x̄+ tα/2

s√
n

)
=

c) Find a margin of error.
h= tα/2

s√
n

=

d) Find the sample size needed to reduce the margin of error by a factor of two.

n=
(
stα/2
h

)2
=

�

Example 189. — * Radioactive-carbon dating was undertaken on 8 samples from a single early
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site.

Sample Radiocarbon age
number determination
C-288 2419
M-26 2485
M-195 2575
M-911 2521
M-912 2451
Y-1279 2550
Y-1280 2540

Compute the two-sided and one-sided confidence intervals of the age of the site, and calculate
the sample size required to estimate the age to within ±10 years.

Solution:
In order to estimate the age of the site, we estimate the mean of the distribution by the sample
mean and write

x̄= 2505.86
a) Two-sided CI:

Use a T -statistic to find a 95% confidence interval which gives a range of plausible values for
the mean age. This is(

x̄− tα/2
s√
n
, x̄+ tα/2

s√
n

)
,

and, putting in n= 7 and x̄= 2505.86, t0.025 = 2.447, from a t-distribution with 6 degrees of
freedom, s= 56.44, results in a 95% confidence interval of (2453.5, 2558.3), thereby giving a
range of *plausible* values for µ.

b) The 100(1−α)% lower confidence interval is(
−∞, x̄+ tα√

n
s

)
= (−∞ ; 2,547.31)

here t0.05 = 1.943.
c) The 100(1−α)% upper confidence interval is

(2,464.4 ; ∞)

d) To simplify the sample size calculation, we assume a normal approximation to avoid the
dependency between tα/2 and the sample size, so that we can use:

n≈
(szα/2

h

)2
= 122

in this case, since h= 10 and zα/2 = 1.96.
Note: tα/2 = 1.98 for n= 122.

�
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Example 190. — * Confidence intervals for Proportion In an opinion poll prior to the 2016 US
Presidential election, out of 688 constituents chosen at random 368 said they would vote for
Hillary Clinton (53.5%). The newspapers typically use these data to estimate p, the probability
that a constituent selected at random would vote Clinton, but they rarely give any idea of the
quality of the estimate.
Calculate a 95% confidence interval for p.

Solution:
First identify the random sample. Constituents questioned are labeled 1,. . . , 688. Let

Xi =
{

1, if ith constituent says "I will vote Clinton",
0, otherwise.

Then Xi ∼ Ber(p), and the sample size n is 688. Recall that for a Ber(p),

µ= E (Xi) = p

σ2 = V (Xi) = p(1−p)

We know that µ, and therefore p, can be estimated by the sample mean x̄= 368
688 = 0.535, and we

can use the usual confidence interval for the mean(
x̄− σ√

n
zα/2, x̄ + zα/2

σ√
n

)

assuming that the variance is known, σ2 ≈ x̄(1− x̄). This gives (0.498, 0.572) as a 95% confidence
interval for p, with point estimate 0.535. Margin of error = (0.572 -0.498)/2=0.037.
For 99% confidence we would use z0.005 = 2.576 to replace 1.960, and get a wider interval (0.486,
0.584) that is less accurate! Margin of error = (0.584 -0.486)/2=0.049. �

Example 191. At a weigh station, the weighs of trailer trucks were observed before crossing a
highway bridge.
(a) Suppose observations on 30 trucks yielded a sample mean of 12.5 tons. Assume that the
standard deviation of truck weights is known to be 2.5 tons. Determine the two-sided 99%
intervals of the mean weight of trailer trucks on the particular highway.
(b) In part (a), how many additional trucks should be observed such that the mean truck weight
can be estimated to within ±1 ton with 99% confidence

Solution: (a)

CI = (x̄+ z0.005
σ√
n
, x̄+ z0.995

σ√
n

)

= (12.5−2.58× 2.5√
30
,12.5 + 2.58× 2.5√

30
)

= (11.3,13.7)

(b) Sample size calculation: n′ =
(σzα/2

h

)2
=
(

2.5×2.58
1

)2
= 42

So 42−30 = 12 additional observation of truck weights would be required.
�
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Example 192. In a traffic study, the speed of vehicles are measured by laser guns for the purpose
of determining the mean vehicle speed on a particular city street. It is known that the posted
speed limit is 45 kph. The following results were obtained from ten test vehicles:

45, 39, 50, 41, 47, 42, 44, 48, 48, 44 kph

(a) Determine the 95% two-sided confidence interval of the mean vehicle speed.

Solution: (a)

x̄ = 44.8
s2 = 1

10−1[
∑

x2
i −10× x̄2]

= 12.178
t0.025(r = 9) = 2.262

CI = x̄± t0.025×
s√
n

= 44.8± (2.262)× 3.49√
10

= (42.3 ;47.3)

�

6.2.2 Confidence intervals for σ2

Recall: C2 = (n−1)S2

σ2 ∼ χ2
n−1. Therefore,

P
(
χ2

1−α/2 < C2 < χ2
α/2
)

= 1−α

where χ2
α/2 is the 1− α

2 quantile from the distribution χ2
n−1

0 2 4 6 8 10 12 14 16
0

0.1

0.2

r = n−1

χ2
1−α/2 χ2

α/2

1−α

c2

PF
D

of
χ

2 r

Proceedings similarly as we did with the mean µ, we find:
The 100(1−α)% Confidence intervals for σ2 :
a) The two-sided CI:
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(n−1)S2

χ2
α/2

,
(n−1)S2

χ2
1−α/2


b) The lower CI:−∞, (n−1)S2

χ2
1−α


c) The upper CI:(n−1)S2

χ2
α

,∞


Example 193. Suppose that n=9, x̄=51.2, and s=11.7. Find the 95% Confidence intervals for
σ2.

Solution: Here α =0.05, χ2
1−α/2 =2.18, χ2

α/2 =17.535, χ2
1−α =2.733, χ2

α =15.507 , which gives
a) The two-sided CI:(n−1)S2

χ2
α/2

,
(n−1)S2

χ2
1−α/2

= (62.6 ;503.6)

b) The lower CI:−∞, (n−1)S2

χ2
1−α

= (−∞ ;401.7)

c) The upper CI:(n−1)S2

χ2
α

,∞
= (70.8 ;∞)

�

6.3 Hypothesis Testing
Rather than looking at confidence intervals associated with a model parameter µ, we might formulate
a question associated with the data in terms of a hypothesis. In particular, we have a so-called
null hypothesis, denoted H0, which refers to some basic premise which to we will adhere unless
evidence from the data causes us to abandon it.

Basic example Suppose the throughput of a laptop production system, in number of laptops
per hour, was N(µ0 = 20,σ2 = 100) before an improvement performed to the system. We want
to see if the improvement was effective by testing the mean after improvement, µ.

The null hypothesis is

H0 : µ= µ0 no difference after the improvement
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The alternative hypothesis H1 can be either:

a) H1 : µ 6= µ0 before and after are different (2-sided ), or
b) H1 : µ > µ0 new system is better (1-sided), or
c) H1 : µ < µ0 old system is better (1-sided).

Example 194. A coin with probability µ of coming up tails is tossed and we hypothesize that it
is fair. Therefore:

H0 : µ= 1
2 vs H1 : µ 6= 1

2

Now, if there is reason to believe that the coin is biased towards tails (we suspect that µ > 1
2)

then:

H0 : µ= 1
2 vs H1 : µ > 1

2

6.3.1 Basic t-test about µ
Recall that:

T = X̄−µ
S/
√
n
∼ tn−1

Suppose: H0 : µ= µ0. Then, under the null hypotheses we have that

T = X̄−µ0
S/
√
n
∼ tn−1 if H0 is true.

Key idea: We take a sample to observe a realization of the random variable T :

t0 = x̄−µ0
s/
√
n

If it falls “far from” its mean E(T ) = 0 then we reject H0, else we fail to reject it.

The meaning of “far from” depends on the alternative hypothesis H1, and on the significance
level, α. Suppose we wanted to test

H0 : µ= µ0 against H1 : µ 6= µ0

In this case, we fail to reject H0 if: −tα/2 < t0 < tα/2 Why? because

P
(
−tα/2 < T < tα/2

)
= 1−α

means that if H0 is true then 100(1−α)% of the realizations of T should fall in that range.
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Summary of rejection regions:
a) if H1 : µ 6= µ0⇒ reject H0 if: |t0|> tα/2
b) if H1 : µ > µ0⇒ reject H0 if: t0 > tα
c) if H1 : µ < µ0⇒ reject H0 if: t0 <−tα

STOP! Not rejecting the hypothesis does not mean that there is strong evidence that

H0 is true. It is recommendable to use the terminology “reject hypothesis H0” or “not reject
hypothesis H0” but not to say “accept H0”.

Example 195. — * In a traffic study, the speed of vehicles are measured by laser guns for the
purpose of determining the mean vehicle speed on a particular city street. It is known that the
posted speed limit is 45 kph. The following results were obtained from ten test vehicles:

45 39 55 50 47 45 44 48 51 44

(a) Determine the 95% two-sided confidence interval of the mean vehicle speed.
(b) Test the hypothesis that the vehicles are speeding at a 5% level of significance.
(c) If we wish to determine the mean vehicle speed to within ±1 kph with a 99% confidence,
what should be the sample size of our observations?

Solution: (a)

x̄ = 46.8∑
x2
i = 22,082

s2 = 1
10−1[

∑
x2
i −10× x̄2] = 20

t0.025(r = 9) = 2.262
CI = x̄± t0.025×

s√
n

= 46.8± (2.262)× 4.47√
10

= (43.6 ;50)
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(b) H0 : µ= 45, H1 : µ > 45

t0.05(r = 9) = 1.833

t0 = x̄−µ
s/
√
n

= 46.8−45
4.47/

√
10

= 1.27

Since 1.27< 1.833 we fail to reject H0: “There is no evidence to suggest that vehicles are speeding”.
Note, we can’t say vehicles are not speeding.

(c) Sample size calculation: Here

h = 1
z0.995 = 2.58

so, n≈
(szα/2

h

)2
=
(

4.47×2.58
1

)2
= 133

The sample size should be 133. �

Possible error in hypothesis testing. There are two types of possible error in hypothesis testing:
Type I error : rejecting the null hypothesis when it is, in fact, true.
Type II error : not rejecting the null hypothesis when it is, in fact, false.

H0 not rejected H0 rejected
H0 true no error Type I error
H0 false Type II error no error

Thus,

P (Type I error) = P (reject H0 |H0) = α
P (Type II error) = P (accept H0 |H1) = β.

The p-value, denoted p:
1. probability of a test statistic, say T , taking a value at least as extreme as its observed

value t0, assuming H0 is true,
2. or equivalently: the smallest level α such that we would reject the null-hypothesis with the

observed data.

It depends on the alternative hypothesis:
• if H1 : µ > µ0⇒ p= P (T > t0 |H0)
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• if H1 : µ < µ0⇒ p= P (T < t0 |H0)
• if H1 : µ 6= µ0⇒ p= 2min{P (T < t0 |H0),P (T > t0 |H0)}

Three ways of testing hypotheses. For a null hypothesis µ= µ0, the following are a equivalent
procedures to reject H0:

1. the T-test t0 falls in the rejection region
2. the p-value < α
3. the (1−α)100% confidence interval does not contain t0:

|t0|> t ⇔ t0 /∈ (−tα/2, tα/2) ⇔ µ0 = x̄+ t0
s√
n
/∈
(
x̄− tα/2

s√
n
, x̄+ tα/2

s√
n

)
.

Hence we can see that there is an equivalence between the test and the interval.

6.3.2 The magic 5% significance level (or p-value of 0.05)
Question: what is the critical level for the p-value? Is there some generally accepted level at which
null hypotheses are automatically rejected?
A significance level of p < 0.05 is often taken to be of interest, because it is below the “magic” level
of 0.05. The p-value of 0.05 is the watershed used by the Food and Drugs Administration which
licences new drugs from pharmaceutical companies. As a result it has been almost universally
accepted right across the board in all walks of life.
However this level can be, to say the least, inappropriate and possibly even catastrophic. Suppose,
for example, we were considering test data for safety critical software for a nuclear power station,
N representing the number of faults detected in the first 10 years. Would we be happy with a
p-value on trials which suggests that

P (N ≥ 1) = 0.05?

We might be more comfortable if p= 0.0001, but even then, given the number of power stations
(over 1000 in Europe alone) we would be justified in worrying. The significance level which should
be used in deciding whether or not to reject a null hypothesis ought to depend entirely on the
question being asked; it quite properly should depend upon the consequences of being wrong. At
the very least we should qualify our rejection with something like the following.
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0.05< p−value≤ 0.06 “Weak evidence for rejection”
0.03< p−value≤ 0.05 “Reasonable evidence for rejection”
0.01< p−value≤ 0.03 “Good evidence for rejection”
0.005< p−value≤ 0.01 “Strong evidence for rejection”
0.001< p−value≤ 0.005 “Very strong evidence for rejection”
0.0005< p−value≤ 0.001 “Extremely strong evidence for rejection”
p−value≤ 0.0005 “Overwhelming evidence for rejection”

Example 196. — * Concrete placed on a structure was subsequently cored after 28 days, and
the following results were obtained of the compressive strengths from five test specimens:

4042, 3505, 3402, 3939, 3472 psi

(a) Determine the 90% two-sided confidence interval of the mean concrete strength.
(b) Suppose the confidence interval established in part (a) is too wide, and the engineer would
like to have a confidence interval to be ±300 psi of the computed sample mean concrete strength.
Generally, more specimens of concrete would be needed to keep the same confidence level.
However, without additional samples, what is the confidence level associated with the specified
interval based on the five measurements given above?
(c) If the required minimum compressive strength is 3500 psi, test whether the concrete satisfies
these requirements by performing a one-sided hypothesis test at the 2% significance level.

Solution: (a) Sample mean:

x̄ = 4042 + 3505 + 3402 + 3939 + 3472
5

= 3672

Sample standard deviation:

s =
√∑5

1(xi− x̄)
5−1

= 295.37

For a 90% two-sided confidence interval:

t0.05,4 = −2.1318
t0.95,4 = 2.1318

CI = (3672−2.1318295.37√
5

,3672 + 2.1318295.37√
5

)

= (3672−281.6,3672 + 281.6)
= (3390.4,3953.6)

(b) If the half-width of the confidence interval is 300, it means:

tα/2
295.37√

5
= 300

tα/2 = 2.2711
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Refer to T-table with 4 deg. of freedom; we have:

t0.05 = 2.1318
t0.025 = 2.7764

We may use linear interpolation to get an approximate answer:

1−α/2 = 0.95 + (0.975−0.95)∗ 2.2711−2.1318
2.7764−2.1318

= 0.9554
⇒ α = 0.911

The required confidence level is 91.1%.
(c) If the required minimum compressive strength is 3500 psi, test whether the concrete satisfies
these requirements by performing a one-sided hypothesis test at the 2% significance level.

H0 : µ = 3500
H1 : µ < 3500

In this case, the test statistic will now be:

t0 = x̄−µ
s/
√
n

= 3672−3500
295.37/

√
5

= 1.302

With f = 5−1 = 4 d.o.f, we obtain the critical value of t at the 2% significance level to be tα ≈−3.
Therefore the value of the test statistic is outside of the region of rejection, hence the null hypothesis
cannot be rejected, and therefore we conclude that the concretes meet the minimum requirement.
�

Example 197. — Shoshoni bead rectangles The table below gives width-to-length ratios for 20
rectangles, analyzed as part of a study in experimental aesthetics.

Table 6.1: Shoshoni bead rectangles

Width-to-length ratios
0.693 0.670 0.654 0.749
0.606 0.553 0.601 0.609
0.672 0.662 0.606 0.615
0.844 0.570 0.933 0.576
0.668 0.628 0.690 0.611

We want to test whether the Shoshoni instinctively made their rectangles conform to the golden
ratio. That is we want to test

H0 : µ= 0.618 against H1 : µ 6= 0.618.

We have 20 measurements so, under the null hypothesis µ= 0.618 gives
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T =
√

20(X̄−0.618)
S

∼ t(19) ,

where S2 = 1
20

20∑
i=1

(Xi− X̄)2. For these data, x̄= 0.660, s= 0.093, and the observed value of T is

t0 =
√

20(x̄−0.618)
s

=
√

20(0.660−0.618)
0.093 = 2.019

With r = 20−1 = 19 d.o.f, we obtain the critical value of t at the 5% significance level to be
tα/2 ≈ 2.086. Therefore the value of the test statistic is too close to call. In fact, the p-value is
very close to α :

p−value= 2min{P (T < 2.019 |H0),P (T > 2.019 |H0)}= 0.058

This says that the case for it is very weak.

6.3.3 Paired t-test
Suppose that we have pairs of random variables (Xi,Yi) and that Di =Xi−Yi , i= 1, . . . , n, is a
random sample from a normal distribution, i.e. D ∼N(µ,σ2) with unknown parameters. We use
the test statistic

T = D̄−µ0
SD/
√
n
∼ tn−1

under the null hypothesis H0 : µ= µ0. Here S2
D is the sample variance of the differences Di.

Example 198. — Patients with glaucoma in one eye Here is we ask “Is there a difference in
corneal thickness between the eyes?”

Table 4.1 Glaucoma in one eye
Corneal thickness
Glaucoma Normal Difference

488 484 4
478 478 0
480 492 −12
426 444 −18
440 436 4
410 398 12
458 464 −6
460 476 −16

Formally we are testing the difference µ between the corneal thicknesses.

H0 : µ= 0 against H1 : µ 6= 0.

The mean difference is d̄=−4 and the estimated standard deviation is sD = 10.744. Under H0
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we obtain a t-statistic of

t0 = d̄−µ0
sD/
√
n

= −4
√

8
10.744 =−1.053.

With r = 8− 1 = 7 d.o.f, we obtain the critical value of t at the 5% significance level to be
tα/2 ≈ 2.365. Therefore the value of the test statistic is outside of the region of rejection, hence
the null hypothesis cannot be rejected, and therefore we cannot reject the null hypothesis of no
difference in corneal thickness.

−2.365 2.365

0.05

−1.053

6.3.4 The two-sample t-test
One particularly important use of a t-statistic occurs when we have two samples and we wish to
compare the means under the assumption of each sample having the same unknown variance.
Consider two random samples X1, . . . ,Xm and Y1, . . . ,Yn which are independent, normally dis-
tributed with the same variance. The null hypothesis is

H0 : µX = µY

Fact 6.8 Under H0 the test statistic T is such that

T = X̄− Ȳ

Sp

√√√√( 1
m

+ 1
n

) ∼ tm+n−2, (6.2)

where S2
p = (m−1)S2

X+(n−1)S2
Y

m+n−2 is known as the “pooled” variance.

Proof.
Step 1 : Under H0,

X̄− Ȳ ∼N
0,σ2

(
1
m

+ 1
n

) , where σ2 is the common variance.

Step 2 : recall that

(m−1)S2
X

σ2 ∼ χ2
m−1,

(n−1)S2
Y

σ2 ∼ χ2
n−1
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=⇒ (m−1)S2
X + (n−1)S2

Y

σ2 ∼ χ2
m+n−2

Step 3 : Thus, writing

S2
p = (m−1)S2

X + (n−1)S2
Y

m+n−2 ,

we obtain the result:

T = X̄− Ȳ

Sp

√√√√( 1
m

+ 1
n

) ∼ tm+n−2

�

Example 199. — Etruscan and Italian skull widths

Table 4.3 Ancient Etruscan and modern Italian skull widths
Ancient Etruscan skulls Modern Italian skulls

141 147 126 140 141 150 142 133 124 129 139 144 140
148 148 140 146 149 132 137 138 132 125 132 137 130
132 144 144 142 148 142 134 130 132 136 130 140 137
138 150 142 137 135 142 144 138 125 131 132 136 134
154 149 141 148 148 143 146 134 139 132 128 135 130
142 145 140 154 152 153 147 127 127 127 139 126 148
150 149 145 137 143 149 140 128 133 129 135 139 135
146 158 135 139 144 146 142 138 136 132 133 131 138
155 143 147 143 141 149 140 136 121 116 128 133 135
158 141 146 140 143 138 137 131 131 134 130 138 138
150 144 141 131 147 142 152 126 125 125 130 133
140 144 136 143 146 149 145 120 130 128 143 137

The width measurements are taken with the aim of comparing modern day Italians with ancient
Etruscans. The null hypothesis is therefore that the mean skull width is the same. In what
follows X refers to Ancient Etruscan measurements and Y refers to Modern Italian.

x̄− ȳ = 11.33, m= 84, n= 70.

Using the formulas above, the value of the test statistic turns out to be T = 11.92>> tα/2 ≈ 1.98.
( As we are just asking “is there a difference?”, we need a 2-sided alternative hypothesis.) The
test provides overwhelming evidence to suggest that the two populations are ancestrally of
different origin.

6.3.5 Pearson’s χ2 test (goodness-of-fit test)
This is a method for testing how well a particular distribution FX fits the histogram of a single
random variable X from a sample of size n. Hypothesis H0: We claim that

P(“Experiment falls in bin i”) = P(X ∈ bin i), i= 1, . . . ,k.
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where P(X ∈ bin i) is calculated using FX . Let Oi be the observed number in bin i, i= 1,2, . . . ,k
and Ei be the expected number in bin i:

Ei = n ·P(X ∈ bin i) (6.3)

Pearson’s statistic is

Q=
k∑
i=1

(Oi−Ei)2

Ei
∼ χ2

k−1−np . (6.4)

where np is the number of parameters to be estimated, if any.

How large Q should be to reject the hypothesis? Reject H0 if Q> χ2
α(k−1−np). Further,

in order to use the test, as a rule of thumb one should check that nEi > 5 for all i.
Chi-Sqr probability tables.

Example 200. — Flying bomb hits on London In the south of London during World War II, 535
flying bomb hits were recorded. The total area was divided into 576 small areas of 1

4km
2 each.

Flying bomb hits on London
Number of hits in an area 0 1 2 3 4 5 ≥ 6
Frequency 209 193 90 35 7 1 0

Propaganda broadcasts claimed that the weapon could be aimed accurately. If, however, this
was not the case, the hits should be uniformly distributed over the entire area and a natural
approximation for the number of hits in a small area would be the Poisson distribution. Is this
the case?

Solution:
The first thing to do is estimate the the Poisson parameter. Since we know that E(X) = θ a good
candidate is:

θ̂ = x̄= 535
576 = 0.929

Using the Poisson probability mass function pX(x) = e−θθx

x! with θ = 0.929 we therefore obtain

i 0 1 2 3 ≥ 4
P(X ∈ bin i) 0.3949 0.3669 0.1704 0.0528 0.015

Then we pool small cells and we obtain

Number of hits in an area 0 1 2 3 ≥ 4
Frequency Oi 209 193 90 35 8
Expected frequency Ei 211.3 196.3 91.2 28.2 8

Q=
k∑
i=1

(Oi−Ei)2

Ei
= 1.73

http://kisi.deu.edu.tr/joshua.cowley/Chi-square-table.pdf
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This is tested against χ2(r = 5−1−1) = 7.814. Clearly there is not a shred of evidence in favor of
rejection. We have therefore found no evidence to reject the hypothesis that the Poisson distribution
is a good model. Therefore, there is no evidence that V1 flying bomb could be aimed with any
degree of precision.

�

Example 201. — Fair dice? In 1882, R. Wolf rolled a dice n = 20000 times and recorded the
number of eyes shown

Number of eyes i 1 2 3 4 5 6
Frequency Oi 3407 3631 3176 2916 3448 3422

Was his dice fair?

Solution: Sample space S = {1, . . . ,6} and let random variable X be the number shown. Since
the dice is assumed fair, all results are equally probable hence P(X ∈ bin i) = P(X = i) = 1/6.
In our example k = 6. For Wolf’s data Q is

Ei = 20,000∗1/6 = 3,333
Q =

∑
i

[(Oi−Ei)2/Ei]

= [(3,407−3,333)2/3,333] + · · ·+ [(3,422−3,333)2/3,333]
= 1.6280 + 26.5816 + 7.4261 + 52.2501 + 3.9445 + 2.3585 = 94.2

Since r = k−1 = 5 and the quantile χ2
0.05(r) = 11.1, we have Q> χ2

0.05(5) which leads to rejection
of the hypothesis of a fair dice. �

Example 202. A company claims that 30% of its workforce have PhD’s, 60% have an MS degree,
and 10% have a BS degree. Suppose a random sample of 100 workers has 50 PhD’s, 45 MS’s,
and 5 BS’s. Is this consistent with the company’s claim? Use a 0.05 level of significance.

Solution: Null hypothesis: The proportion of PhD’s (i= 1), MS’s (i= 2), and BS’s (i= 3) is:

p1 = 0.3, p2 = 0.6, p3 = 0.1

Alternative hypothesis: At least one of the proportions in the null hypothesis is false.

E1 = 100∗0.30 = 30(why?)
E2 = 100∗0.60 = 60
E3 = 100∗0.10 = 10
Q =

∑
i

[(Oi−Ei)2/Ei]

= [(50−30)2/30] + [(45−60)2/60] + [(5−10)2/10]
= 13.33 + 3.75 + 2.50 = 19.58

Here r = k−1 = 3−1 = 2 and the quantile χ2
0.05(r) = 5.991. W we have Q> χ2

0.05(r) which leads
to rejection of the null hypothesis. �



7. Linear regression

It was the pioneering work of Sir Francis Galton in the 1880s that gave rise to the technique, the
original idea being the direct result of an experiment on sweet peas. He noticed that the seeds of
the progeny of parents with seeds heavier than average were also heavier than average, but the
difference was not as pronounced; the same effect was true for the seeds of the progeny of parents
with light seeds, where again the differences from the average were not as great. He called this
phenomenon reversion and wrote that the mean weight "reverted, or regressed, toward mediocrity".

7.1 The regression model
A simple linear regression model takes the form

Y = β0 +β1x+ ε (7.1)

0 2 4 6 8 10 12 14
0

20

40

E(Y
| x)

= β0+β1x
regression

line

ε
iid∼ N(0,σ2)
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For a sample {(X1,Y1),(X2,Y2) . . .(Xn,Yn)} a re-
gression model takes the form

Yi = β0 +β1xi+ εi, i= 1,2, . . . ,n, (7.2)

where Y1,Y2, . . . ,Yn are observable rv’s condi-
tional on X1 = x1,X2 = x2, . . . ,Xn = xn and

εi
iid∼ N(0,σ2)

are non-observable random variables.
x1 x2 x3

N(β0 +β1xi,σ
2)E(Y |x) = β0 +β1x

E(Y |X = x1)
E(Y |X = x2)

E(Y |X = x3)

x

Y

Terminology :
xi is called an explanatory variable or independent variable or predictor or factor ;
Yi is the response or dependent variable;
εi is the error random variable, whose realizations are called residual.

Note: xi is not considered a random variable in linear regression because it is a realization
the random variable Xi , i.e. we take the values of xi as “given”, and the term Yi should be
interpreted as a conditional:

Yi↔ Yi |Xi = xi

The assumption of the regression model is:

εi
iid∼ N(0,σ2)

This means:
1. Normality: εi ∼ N(0,σ2) for i= 1, . . . ,n.
2. Independence of the errors: ε1, . . . , εn are independent.
3. Homoscedasticity: V(εi) = σ2, with σ2 constant for all i= 1, . . . ,n.

Therefore,

Yi∼N(β0 +β1xi,σ
2) (7.3)

”Linear" model means that it is linear in the unknown parameters β = β0,β1,β2 . . ., and not
in x. For example, the model

Yi = β0 +β1xi+β2x
2
i + εi, i= 1,2, . . . ,n (7.4)

is a linear regression model because it is linear in β0,β1,β2.

7.2 Matrix notation
We are going to be concerned with linear model in its more general form involving several explanatory
variables. The most convenient way of doing that is to write down the model in matrix notation.
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The regression model (7.2) is a set of simultaneous equations which can be written more concisely
as

Y = Xβ+ε (7.5)

where

Y =


Y1
...
Yn

 , X =


1 x1
... ...
1 xn

 , β=
(
β0
β1

)
, ε=


ε1
...
εn

 .

Multiple regression model.
With p explanatory variables, the model takes the form:

Yi = β0 +β1xi1 +β2xi2 + · · ·+βpxip+ εi (7.6)

Systemx3

x2

x1

...
xp

fa
ct
or
s

y response

In matrix form it still reads as (7.5) defining: Y = (Y1, . . . ,Yn)T , β = (β0,β1, . . . ,βp)T , ε =
(ε1, . . . , εn)T and X is a n× (1 +p) matrix, called the design matrix:

X =


1 x11 · · · x1p
1 x21 · · · x2p
... ... . . . ...
1 xn1 · · · xnp

 .

Interpretation of βj. In the model

Y = β0 +β1 ·x1 +β2 ·x2 +β3 ·x3

we can see that

∂Y

∂xj
= βj , j = 1,2,3.

which means that the parameter βj represents the marginal change in Y due to a change in xj .
One should always verify that the sign of βj accords with intuition.

A quadratic model

Yi = β0 +β1xi+β2x
2
i + εi, i= 1,2, . . . ,n
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can be written in the form of Equations (7.5) by defining

X =


1 x1 x2

1
... ... ...
1 xn x2

n

 , β=

 β0
β1
β2

 .

Main effects and interactions give the following regression function:

Y = β0 +β1x1 +β2x2︸ ︷︷ ︸
main effects

+ β3x1x2︸ ︷︷ ︸
interaction term

+ε

can be written in the form of Equations (7.5) by defining

X =


1 x11 x12 x11x12
... ... ... ...
1 xn1 xn2 xn1xn2

 , β=


β0
β1
β2
β3

 .

Example application: Annual income model Let:
Y is annual income ($1000/year),
x1 is educational level (number of years of schooling),
x2 is number of years of work experience, and
x3 is gender (x3 = 0 is male, x3 = 1 is female),

Suppose we estimated the following model

Y = β0 +β1 ·x1 +β2 ·x2 +β3 ·x3 + ε

and obtained (using statistical software),

β̂=


β̂0 = 0.8
β̂1 = 0.8
β̂2 = 0.5
β̂3 =−3.0

 and σ̂ = 9.

Based on this mean function, we can determine the expected income for any person as long as
we know his or her educational level, work experience, and gender.
For example, according to this mean function, a female with 12 years of schooling and 10 years
of work experience would expect to earn $12,400 annually. A male with the same credentials
would expect to earn $15,400 annually.
We can answer questions like: “what is the probability that a female with 16 years education
and 28.4 yrs of work experience experience will earn more than $40,000/year?”
Recall that

Y∼N(β0 +β1 ·x1 +β2 ·x2 +β3 ·x3,σ
2)

The mean for such a person is 0.8 * 1 + 0.8 * 16 + 0.5 * 28.4 -3 * 1 =24.8, so standardizing
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yields the probability:

P (Y > 40) = P ((Y −24.8)/9> (40−24.8)/9)
= P (Z > 1.69)
≈ 0.05.

The gender variable x3 is an indicator variable, since it only takes on the values 0/1 (as
opposed to x1 and x2 which are quantitative).
The slope of an indicator variable (i.e. β3) is the average gain for observations possessing the
characteristic measured by X3 over observations lacking that characteristic. When the slope is
negative, the negative gain is a loss.

7.3 The method of ordinary least squares (OLS)
To estimate the βj ’s we minimize the sum of squared errors, SSE:

SSE =
n∑
i=1

ε2
i = εTε= (Y−Xβ)T (Y−Xβ)

over all possible values of the intercept and slopes. To minimize (Y−Xβ)T (Y−Xβ) with respect
to β, we differentiate with respect to β and equating to 0:

2XT (Y−Xβ) = 0, → XTXβ= XTY.

which is a set of linear simultaneous equations called the normal equations for the linear model.

Fact 7.8 — OLS estimators. Provided XTX is non-singular, the OLS estimators are:

β̂=
(
XTX

)−1
XTY.

The matrix C. For convenience, let:

C =
(
XTX

)−1 → β̂= CXTY.

Fact 7.9 — Properties of the OLS estimators. The OLS estimators have useful properties:

a) β̂ is unbiased: E
(
β̂
)

= β
b) β̂ is a linear transformation of Y, so it has the (multivariate) normal distribution

β̂∼ N(β,Σ)

where Σ is the covariance matrix of β̂, and

Σ = σ2C.

This result implies that

β̂i ∼N(βi,σ2cii) (7.7)
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where cij is the (i, j) element of C, so

V
(
β̂i
)

= σ2cii

Cov
(
β̂i, β̂j

)
= σ2cij

But the true variance σ2 is unknown, and therefore has to be estimated.

Fact 7.10 — An unbiased estimator for σ2.

σ̂2 = SSE

n−p−1 is unbiased for σ2.

Furthermore,

(n−p−1) σ̂2

σ2 ∼ χ2
n−p−1.

Finally, β̂ is independent of σ̂2.

We conclude that the estimator of the covariance matrix is Σ̂ = σ̂2C.
The standard errors of the coefficient estimates β̂= {β̂0, β̂1, . . . , β̂p} are√

V
(
β̂i
)

= σ̂
√
cii

7.4 Testing the significance of coefficients
Since

β̂i ∼N(βi,σ2cii) then Zi = β̂i−βi
σ
√
cii
∼N(0,1).

Using the result that

(n−p−1)σ̂2

σ2 ∼ χ2
n−p−1

and remembering the definition of a t-distribution we conclude that

T = β̂i−βi√
V
(
β̂i
) ∼ tn−p−1 (7.8)

This enables us to carry out hypothesis tests or calculate confidence intervals for coefficients.
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Significance test for βi : H0 : βi = 0 against H1 : βi 6= 0
Let t0 = β̂i/

√
V
(
β̂i
)
, then we reject H0 if

|t0|> tα/2 (7.9)

where tα/2 is the critical values from the distribution tn−p−1, which is typically ≈ 2. This test is
important because if we cannot reject H0 it means that the variable xi does not help
explain Y and therefore should be removed from model.
Recall that instead of this T-test we can also use the p-value, if available, and reject H0 if p < α.

7.5 Goodness-of-fit: R2

The sum of squared residuals (SSE) measures the amount of variability that the linear model can
not explain. The total sum of squares (SST) measures the total amount of variation in Y without
considering variable x:

SST =
n∑
i=1

(Yi− Ȳ )2.

Hence SSE
SST measures the proportion of total variation that can not be explained by the linear

regression. It can be shown that 0≤ SSE
SST ≤ 1.

The Coefficient of determination
R2 measures the proportion of the total
variations in Y that can be explained
by the linear model and it is defined as

R2 = 1− SSE
SST

(7.10)

(a): ∑n
i=1 ε

2
i = SST , (b): ∑n

i=1 ε
2
i = SSE

It quantifies the reduction in variability of the response variable as a result of the linear relationship
with X.
R is called the sample correlation coefficient and ≈ ρX,Y as n→∞, and therefore measures
the strength of the linear relationship.

7.5.1 Adjusted R2

The problem with R2 is that it cannot decrease when additional explanatory variables are added to
the model, even if they have no significant effect on Y. Since all models with the same dependent
variable will have the same SST, and SSE cannot increase with additional variables, R2 is a
nondecreasing function of p. An alternative measure, computed by most econometrics packages, is
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the so-called ‘Adjusted R2” :

R̄2 = 1− SSE/(n−p−1)
SST/(n−1) = 1− σ̂2

s2
Y

(7.11)

where the numerator and denominator of R2 are divided by their respective degrees of freedom.
For a given dependent variable, the denominator does not change; but the numerator, which is
σ̂2, may rise or fall as p is increased. An additional regressor uses one more degree of freedom,
so
(
n− (k+ 1)

)
declines; and SSE declines as well (or remains unchanged). If SSE declines by a

larger percentage than the degrees of freedom, then R̄2 rises, and vice versa. Adding a number of
regressors with little explanatory power will increase R2, but will decrease R̄2− which may even
become negative! R̄2 does not have the interpretation of a squared correlation coefficient, nor of
a “batting average” for the model. But it may be used to compare different models of the same
dependent variable.

7.5.2 One-way ANOVA
We can decompose the total variance as follows:

SST = SSR + SSE
n∑
i=1

(yi− ȳ)2 =
n∑
i=1

(ŷi− ȳ)2 +
n∑
i=1

(yi− ŷ)2

where SSR = regression sum of squares, and the predicted values or fitted values is ŷi = β̂0 + β̂1x1,i+
β̂2x2,i+ · · · . It turns out that under the no hypotheses H0 : β1 = β2 = · · ·= 0 the statistic:

F = SSR/p

SSE/(n−p−1) = MSR

MSE
(7.12)

follows an Fν1,ν2 distribution, where ν1 = p and ν2 = n−p−1. As usual, we will reject the no hy-
pothesis if the observed F statistic is greater than the critical value from the F probability tables.

7.6 Assessing the model
The first step in looking at the adequacy of a model is to check the assumptions on which it is
based:

The assumption of the regression model is:

εi
iid∼ N(0,σ2)

This means:
1. Normality: εi ∼ N(0,σ2) for i= 1, . . . ,n.
2. Independence of the errors: ε1, . . . , εn are independent.
3. Homoscedasticity: V(εi) = σ2, with σ2 constant for i= 1, . . . ,n.

http://socr.ucla.edu/Applets.dir/F_Table.html
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Residual plots (residuals versus the fitted values) are the main tool for checking model assumptions.
No discernible pattern in this plot is a good sign of independence, linearity and constant variance.
The Q-Q plot (normal probability plot) is a scatterplot between the observed quantiles of residuals
vs. the theoretical quantiles from the normal distribution. A linear relationship indicates good
agreement with the normal distribution.
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QQ-plots for datasets respecting (left column) and violating (right column) the normality assumption.
Source.

Example 203. — AIDS data for the USA These data are for AIDS incidence in the USA, ad-
justed for reporting delays. The data are taken from Rosenberg, P.S. and Gail, M.H. (1991):
Backcalculation of flexible linear models of the Human Immunodeficiency Virus infection curve.
Applied Statistics, 40, 269-282.
Newly reported cases are recorded quarterly and the variable Time therefore counts 3-monthly
periods, staring with the first quarter in 1982.
The scatterplot shows that the trend is not linear.

https://bookdown.org/egarpor/SSS2-UC3M/diagnostics.html
http://www.stats.ox.ac.uk/~myers/stats_materials/datasets/AIDS.txt
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Incidence of AIDS cases in the USA against time

The plot has all the appearance of showing a functional relationship between AIDS incidence
and time. One might, for example, try to fit an exponential function or some kind of power law
to model the growth curve.
The plot suggests that the incidence of AIDS against time in the USA is not linearly related to
time. Let’s fit the model

Yi = β0 +β1xi+β2x
2
i + εi, i= 1,2, . . . ,n

and test the coefficients β1, β2. We can use a standard computer package to carry out the
regression.
Variable Coefficient s.e. t-value p-value
Intercept β0 343.5913 87.7446 3.9158 0.0007
Time β1 −60.1380 15.5514 −3.8671 0.0008
Time2 β2 15.6277 0.5806 26.9158 0.0000
R2 = 0.9976 d.f.= 22 σ̂ = 134.7 SSE = 399155

This is a typical computer package output, and we need to say a few words about what some of
these figures mean.
The values for the coefficients β0, β1 and β2 are simple enough to interpret. The fitted model is

Cases= 343.5913−60.1380×Time+ 15.6277×Time2.

The value R2 = 0.9976 above means that if it is excellent. (99.76% of the variability is explained
by the model, whilst the remaining 0.24% is the unexplained or residual variability.) But can
this model be relied upon?
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Plot of residuals against fitted values for AIDS data

• The points to the right seem a little more spread out but there is no indication that spread
is a function of fitted value.
• There does seem to be some curvature − re-think the assumption about the model?
• We also need to check up on the third assumption.
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Normal probability plot of AIDS residuals

This doesn’t look too bad. We can therefore conclude that we have a reasonable model which
could perhaps be improved, but which fits the data pretty well for the most part.

Example 204. — Testicular cancer The table below comprises data from Lee, Hitosugi and
Peterson (1973): Rise in mortality from tumors of the testis in Japan, 1947-70. J. Nat. Cancer
Inst., 51, 1485-90. It gives the populations and numbers of deaths from testicular cancer in
5-year age groups and 5-year periods in Japan. The ages refer to the lowest age in each group
and the populations are expressed in millions of persons.

http://www.stats.ox.ac.uk/~myers/stats_materials/datasets/testis.txt
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Table 5.4 Deaths in Japan from testicular cancer
1951-55 1956-60 1961-65 1966-70

Age Popn. Dths Popn. Dths Popn. Dths Popn. Dths
20 20.4 27 21.3 39 22.2 56 24.0 83
25 17.2 40 20.0 58 20.6 97 21.8 125
30 12.6 18 17.1 54 19.9 77 20.8 129
35 11.7 13 12.5 36 17.0 70 19.9 101
40 11.5 26 11.5 32 12.2 29 16.8 67
45 10.3 16 11.2 26 11.1 34 12.0 37
50 9.3 16 9.8 27 10.7 27 10.7 29
55 7.6 17 8.7 19 9.2 32 10.1 39
60 5.9 13 6.8 21 7.9 21 8.4 31

The scatterplot shows that the mean death rate from cancer of the testis in Japan has been
rising steadily since 1951.
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Death rate against year for cancer of the testis in Japan

Note that there is no variability in the explanatory variable, but there is marked variability in
the response. This is clearly shown in the boxplots.
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Boxplots of death rates

It is clear that the variability in the data increases as the year variable increases. What should
one do about this?
The answer is to look for a transformation which will stabilise the variance. Here we need a
transformation which compresses large values of the response more than it compresses smaller
values; something like a square root or a cube root or possibly even a log transformation. Taking
the log of the death rate results in the next scatterplot.
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Testicular cancer: plot of log(Death rate) against year

This looks reasonable and we could now go ahead and fit a model of the form

log (Yi) = β0 +β1xi+ εi, i= 1,2, . . . ,n.

With the log transformed data, the fitted model turns out to be as given below.
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Linear Model
Response: log(Death rate)
Variable Coefficient s.e. t-value p-value
Intercept β0 −105.9198 14.4887 −7.3105 0.0000
Year β1 0.0545 0.0074 7.3808 0.0000
r2 = 0.6157 d.f.= 34 s= 0.2479 SSE = 2.0891

Of course stable variance alone is not enough because the residuals also need to be normally
distributed. This can be checked with a normal q-q plot of the residuals.
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Normal probability plot of testicular cancer residuals

The plot seems to show a very rough straight line, but it is not entirely convincing.

7.7 Model selection
Question: With a large number of potential predictors, how do we choose the predictors to include
in the model? Selecting the most adequate predictors for a multiple regression model is a challenging
task without a unique solution. We want good prediction, but keeping the model as simple as
possible:

Occam’s Razor (The law of parsimony): “Among competing hypotheses, the one with the fewest
assumptions should be selected."
→ choose the model with the fewest number of parameters that explains the data.

The inclusion of more predictors is not for free: there is a price to pay in terms more variability on
the coefficients: the maximum number of predictors p that can be considered in a linear model for
a sample size n: p≤ n−2. Or equivalently, there is a minimum sample size n required for fitting a
model with p predictors: n≥ p+ 2, or the degrees of freedom n−p−1≥ 1.

Good fit Criteria
When we have several alternative models, we need a criteria for determining which of two models is
“better". As you might suspect, there is no universally agreed upon criteria for evaluating models.
A good model would give yes to the following questions:
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• are the assumptions met?
• good Adj-R2?
• good t-statistics for the βj ’s (|t0|> 2) ?
• the sign of βj ’s accords with intuition?

Example 205. — * Housing values in suburbs of Boston. Home values for 506 Boston suburbs
with potential influential factors is shown below. ( Source: Belsley D. A., Kuh, E. and Welsch,
R. E. (1980) Regression Diagnostics.).

Xi Description
1 Per capita crime rate by town
2 Proportion of residential land zoned for lots over 25000 square feet
3 Proportion of non-retail business acres per town
4 Charles River dummy variable (1 if tract bounds river, 0 otherwise)
5 Nitrogen oxide concentration (parts per 10 million)
6 Average number of rooms per dwelling
7 Proportion of owner-occupied units built prior to 1940
8 Weighted mean of distances to five Boston employment centers
9 Index of accessibility to radial highways
10 Full-value property-tax rater per $10000
11 Pupil-teacher ratio by town
13 Lower status of the population (percent)

The models below are the output of an automated model selection procedure, for the response
variable Y = median value of owner-occupied homes in $1000s, and for models that only
consider main effects:

Yi = β0 +β1xi1 +β2xi2 + · · ·+βpxip+ εi

The parameter table gives the parameter values in the second row and the T-statistic in the
third row in bold.

a) Explain how the parameter values should be used to assess the adequacy of a model; give
3 example.

b) decide which model is the “best" and carefully explain why.
c) decide which model is the “worst" and carefully explain why.

http://en.wikipedia.org/wiki/Coefficient_of_determination#Adjusted_R2
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Example 206. — * Data from 93 cars on sale in the USA in 1993. Data from 93 cars, selected at
random, on sale in the US in 1993 with 27 variables. Source: Lock, R. H. (1993) 1993 New Car
Data. Journal of Statistics Education 1(1).
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Xi Description
1 Minimum Price (in $1,000): price for a basic version
2 Price (in $1,000): average of Min.Price and Max.Price.
3 Maximum Price (in $1,000): price for ’a premium version’
4 City MPG (miles per US gallon by EPA rating).
5 Highway MPG.
6 Number of cylinders (missing for Mazda RX-7, which has a rotary engine).
7 Engine size (litres).
8 Horsepower (maximum).
9 RPM (revs per minute at maximum horsepower)
10 Engine revolutions per mile (in highest gear).
11 Fuel tank capacity (US gallons).
12 Passenger capacity (persons).
13 Length (inches).
14 Wheelbase (inches).
15 Width (inches).
16 U-turn space (feet).
17 “Rear” seat room (inches) (missing for 2-seater vehicles).
18 Luggage capacity (cubic feet) (missing for vans).
19 Weight (pounds).

The models below are the output of an automated model selection procedure, for the response
variable Y = the (log of) price of the basic car, and for models that only consider the main
effects. The parameter table gives the parameter values in the second row and the T-statistic
in the third row. You can ignore the column labeled “BIC”.

a) Explain how the parameter values should be used to assess the adequacy of a model; give
an example.

b) decide which model is the “best" and carefully explain why.
c) decide which model is the “worst" and carefully explain why.
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More examples like this here.

Solution:
a) Explain how the parameter values should be used to assess the adequacy of a model; give an

example.

What is important about the parameter value is its sign, in that it has to make intuitive
sense. For example in model M-3 the parameter β8, which is the parameter for horsepower, is
positive. This makes sense because the price of a car should increase with its horsepower.

b) decide which model is the “best" and carefully explain why.

The residuals and future plots for all models are very similar and not particularly faulty, so

https://sway.com/DSmAylF4zaeGf49C
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the basic assumptions are met fairly well by all models.
By the principle parsimony, the best model is the one with the fewest number of parameters,
all of them significant (good t-test) and a good Adj-R2. I would choose M-3, because the
closest competitor, M-7, has only a slightly better Adj-R2 but at the high price of one
additional variable.

c) decide which model is the “worst" and carefully explain why.

I would choose model M-8 because it has six parameters, two of them not significantly different
from zero. Model M-9 is very similar but has slightly better T-statistics.

�

Example 207. — * Climate change This data series from 1959 - 2016 includes the annual global
mean surface temperature (Temp) and two possible explanatory variables, the year and the
annual average fraction of CO2 contained in the earth’ s atmosphere (CO2). Source

Description
X1 Year
X2 CO2 atmospheric composition is defined as the number of molecules

of carbon dioxide divided by the number of molecules of dry air
multiplied by one million (ppm).

Y The annual average Temperature is measured in units of 1/100 of a
degree centigrade increase above the 1950-1980 mean, often referred
to as the global surface temperature anomaly.

The models below are the output of an automated model selection procedure, for the response
variable Y . The parameter table gives the factor that the parameter multiplies in the first row
(“1.” means intercept), the parameter values in the second row and the T-statistic in the third
row. You can ignore the column labeled “BIC”.
In the models below, decide which model is the best and explain why.

https://data.giss.nasa.gov/gistemp/
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Solution: Solved in class. �

7.8 Making predictions
Once the coefficients have been estimated and the assumptions verified, the fitted equation can
be used to obtain predictions for Y for any given values x0 = (1,x01, . . . ,x0p) of the explanatory
variables x = (1,x1, . . . ,xp). There are two type of predictions that we can do: prediction of the
mean response and prediction of a particular realization.
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7.8.1 Prediction of the mean response at x0,E(Y | x0) = x0β.
The point estimate of E(Y | x0) = x0β is:

Ŷ0 = x0β̂,

= β̂0 + β̂1x01 + β̂2x02 + · · ·+ β̂px0p

and is an unbiased estimator of x0β. For the confidence interval for E(Y | x0) = x0β, we note
that Ŷ0 is a linear combination of the random vector β̂ and therefore must be normally distributed
with

E(Ŷ0) = x0β, V(Ŷ0) = x0Σx0
T = σ2x0Cx0

T .

Thus,

T = x0β̂−x0β

σ̂
√

x0Cx0T
∼ tn−p−1

and an inequality can be constructed and re-arranged for x0β in the usual way:

(1−α)% Confidence interval for E(Y | x0):

x0β̂± tα/2 σ̂
√

x0Cx0T

7.8.2 Prediction of a particular realization of Y0 = x0β+ ε0
The point estimate of Y0 = x0β+ ε0, with ε0 ∼N(0,σ2) is also:

Ŷ0 = x0β̂

and is an unbiased estimator of Y0. For the confidence interval, we know that Y0 ∼N(x0β,σ2),
and therefore Y0− Ŷ0 has a normal distribution with mean

E
(
Y0− Ŷ0

)
= x0β−x0β= 0

V
(
Y0− Ŷ0

)
= V(y0) + V(x0β̂)
= σ2 +σ2x0Cx0T

= σ2(1 +x0Cx0T ).

since Y0 and β̂ are independent. Then,

T = Y0−x0β̂

σ̂
√

1 +x0Cx0T
∼ tn−p−1. (7.13)

(1−α)% Confidence interval for a particular realization of Y | x0:

x0β̂± tα/2σ̂
√

1 +x0Cx0T
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7.9 Simple linear regression
In this case:

β=
(
β0
β1

)
, X =


1 x1
... ...
1 xn

 , XTY =
( ∑

Yi∑
xiYi

)
, XTX =

(
n

∑
xi∑

xi
∑
x2
i

)

C =

( ∑
x2
i −∑xi

−∑xi n

)
n
∑(xi− x̄)2

It will be convenient to define :

Sxy =∑(xi− x̄)(Yi− Ȳ ) Sxx =∑(xi− x̄)2 Syy =∑(Yi− Ȳ )2

=∑
xiYi−nx̄Ȳ =∑

x2
i −nx̄2 =∑

Y 2
i −nȲ 2

≈ nCov(X,Y ) = (n−1)S2
X = (n−1)S2

Y

where S2
X = 1

n−1
∑n
i=1(xi− x̄)2 and, S2

Y = 1
n−1

∑n
i=1(Yi− Ȳ )2 are the unbiased variance estimators

of previous chapters.

so that

C = 1
nSxx

( ∑
x2
i −∑xi

−∑xi n

)

β̂=
 β̂0
β̂1

= CXTY = 1
nSxx

( ∑
x2
i
∑
Yi−

∑
xi
∑
xiYi

−∑xi
∑
Yi+n

∑
xiYi

)
= 1
nSxx

(
nȲ

∑
x2
i −nx̄

∑
xiYi

nSyy

)
.

Fact 7.17 The OLS expressions for β̂0 and β̂1 are:

β̂1 = Sxy
Sxx

, and β̂0 = Ȳ − β̂1x̄.

Fact 7.18 — The variance of β̂0 and β̂1.

V
(
β̂1
)

= σ̂2

Sxx
, V

(
β̂0
)

= σ̂2
∑
x2
i

nSxx
, and Cov

(
β̂0, β̂1

)
=−σ̂2

∑
xi

nSxx

where σ̂2 = SSE
n−2 and (n−2)σ̂2

σ2 ∼ χ2
n−2

→ Since Sxx is proportional to V(X), a more precise estimate the slope is obtained for x-
values that are more spread out.

Significance test for β1 : H0 : β1 = 0 against H1 : βi 6= 0
→ Reject H0 if

| β̂1
σ̂/
√
Sxx
|> tα/2.
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This test is important because if we can’t reject H0 it means that the variable Xi does not help
explain Y and therefore should be removed from model.

The regression line passes by (x̄, Ȳ )

E(Yi) = β̂0 + β̂1xi

= Ȳ − β̂1x̄+ β̂1xi

= Ȳ + β̂1(xi− x̄)

We can also estimate β0 and β1 without matrices by differentiating

SSE(β0,β1) =
n∑
i=1

ε2
i =

n∑
i=1

(yi−β0−β1xi)2

and solving:

∂SSE

∂β0
=−2

n∑
i=1

(yi−β0−β1xi) = 0

∂SSE

∂β1
=−2xi

n∑
i=1

(yi−β0−β1xi) = 0

for β0 and β1. We would get the same result.

SSE,R2

SSE = Syy− β̂1Sxy

= Syy−S2
xy/Sxx. (proof)

Since SST = Syy and SSE = Syy−S2
xy/Sxx, we can see that

R2 =
S2
xy

SxxSyy
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R≈ ρX,Y , the correlation between X and Y . Recall

ρ(X,Y ) = Cov(X,Y )√
V(X)V(Y )

=
E
[(
X−E[X]

)(
Y −E[Y ]

)]√
E
[(
X−E[X]

)2]E[(Y −E[Y ]
)2]

≈
1
n

∑(xi− x̄)(yi− ȳ)√
1
n

∑(xi− x̄)2 1
n

∑(yi− ȳ)2

=
1
nSxy√

1
nSxx

1
nSyy

= Sxy√
SxxSyy

=R

Connection between the slope and the correlation coefficient:

β̂1 = SY
SX

R.

→ Since ρ̂=R, the test H0 : β1 = 0 is similar to H0 : ρ= 0.
To see this,

R2 =
S2
xy

SxxSyy
=
S2
xy

S2
xx

Sxx
Syy

= β̂2
1
Sxx
Syy

= β̂2
1
S2
X

S2
Y

.

and the result follows.

7.9.1 Predictions
Suppose we wish to predict E (Y ) at the point x0. Then x0 = (1,x0) so

V
(
Ŷ0
)

= σ̂2x0Cx0
T = σ̂2

 1
n

+ (x0− x̄)2

Sxx


And we obtain:

(1−α)% Confidence interval for E(Y | x0):

β̂0 + β̂1x0± tα/2,n−2 σ̂

√
1
n

+ (x0− x̄)2

Sxx

(1−α)% Confidence interval for a particular realization of Y :

β̂0 + β̂1x0± tα/2,n−2 σ̂

√
1 + 1

n
+ (x0− x̄)2

Sxx
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Example 208. — Divorces in England and Wales The table below gives the data and summary for:

Y = the annual number of divorces recorded in England and Wales between 1975 and 1980.
x = years since 1974 (x= 1 means year 1975).

Total
xi 1 2 3 4 5 6 21
yi 120.5 126.7 129.1 143.7 138.7 148.3 807.
xiyi 120.5 253.4 387.3 574.8 693.5 889.8 2919.3
x2
i 1 4 9 16 25 36 91
y2
i 14520.3 16052.9 16666.8 20649.7 19237.7 21992.9 109120.

We therefore obtain

n x̄ ȳ Sxy Sxx Syy β̂1 β̂0 σ̂2 R2

6. 3.5 134.5 94.8 17.5 578.72 5.417 115.54 16.294 0.887

.

.

.

.

.

.

120

130

140

150

1975 1976 1977 1978 1979 1980

Divorces (thousands)

Year

Divorces in England and Wales with fitted line

Our estimate of the rate of increase of divorces is β̂1 = 5.417 and we would like to answer the
question “Is the divorce rate changing?” In other words, we would like to test the null hypothesis

H0 : β1 = 0

Under H0

T = β̂1√
σ̂2/Sxx

=∼ t(4)

giving

t= 5.417√
16.294/17.5

= 5.614.
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We therefore have strong evidence to reject the null hypothesis that the divorce rate is not
changing; that is, there is strong evidence of an increasing divorce rate.

Example 209. — US Cars :

More examples here.

Example 210. You recorded the speed of 7 individual vehicles on a highway segment with posted
speed limit of 55 mph, Y , in mph, and the rainfall, X, at the time of each particular measurement,
in millimeters per hour, mm/h. The following descriptive statistics were obtained:

∑
xi

∑
yi

∑
xiyi

∑
x2
i

∑
y2
i n

125 377.44 5846.55 3012.5 21,580.36 7

(a) Find the linear regression model ŷ = β̂0 + β̂1x and interpret the meaning of the estimated
parameters in this case.
(b) Conduct a hypothesis test (5% significance level) to determine whether rainfall is a useful

https://sway.com/E5ywW9CW3uNXJdOH
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linear predictor of vehicle speeds.
(c) Use hypotheses testing to assess whether or not the average speed in this highway exceeds
the speed limit by 10 mph on non-rainy days.
(d) Consider the confidence interval for the speed of a particular vehicle. At what level of rainfall
is this interval the narrowest? Calculate this interval and interpret its meeting.
(e) Test the hypotheses that the true variance of the regression model is at least 100.
(f) Estimate the probability that an individual driver will be traveling at 10 mph over the speed
limit.

Solution:

Sxx =
∑

(xi− x̄)2

=
∑

x2
i −nx̄2

= 780.36
Sxy =

∑
(xi− x̄)(Yi− Ȳ )

=
∑

xiYi−nx̄Ȳ
= −893.45

Syy =
∑

(Yi− Ȳ )2

=
∑

Y 2
i −nȲ 2

= 1228.80
β̂1 = Sxy

Sxx
= −1.1449

β̂0 = ȳ−β1x̄

= 74.365
SSE = Syy− β̂1Sxy

= 205.89
σ̂2 = SSE

n−2
= 41.178

(a)

ŷ = β̂0 + β̂1x

= 74.365−1.1449x̂

In this straight line, which shows the relationship between vehicle speed (Y) and rainfall (X), the
intercept β̂0 is average speed when a non-rainy day, and the slope β̂1 represents the change in
vehicle speed due to a unit change in the rainfall.

(b) We test H0 : β1 = 0 against H1 6= 0

| β̂1
σ̂/
√
Sxx
| = | −1.1449√

41.178/
√

780.36
|

= 4.98> t0.025,5 = 2.5706
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so we reject H0 which means rainfall is a useful linear predictor of vehicle speeds.

(c) We test H0 : β0 + β1x = 65 against H1 : β0 + β1x > 65, but on a non-rainy day, x = 0, so
we are testing H0 : β0 = 65 against H1 : β0 > 65

V ar(β̂0) = σ̂2
∑
x2
i

nSxx

= 41.178× 3012.5
7×780.36

= 22.709
β̂0−65√
V ar(β̂0)

= 74.365−65√
22.709

= 1.9652< t0.05,5 = 2.0150
so we accept H0, which means vehicle speeds do not exceed the speed limit by 10 mph on non-rainy
days.
(d) The confidence interval is narrowest when rainfall level equals its average value: x0 = x̄= 17.86:
the 95% confidence interval is

β̂0 + β̂1x0± tα/2,n−2 σ̂

√
1 + 1

n
+ (x0− x̄)2

Sxx
= 74.365−1.1449×17.86±2.0150×6.85

= 53.92±13.82
= (40.10,67.74)

so the confidence interval for vehicle speed when rainfall level is 17.86 mm/h is (40.10, 67.74) mph.
As with any confidence interval, the interpretation is that the method we use to compute this
interval will contain a realization of a particular vehicle speed 95% of the time; that is, if the
experiment of taking a sample and computing this interval is repeated many times, then on average
95% of those intervals will contain a realization of a particular vehicle speed when x0 = x̄.
We cannot say: “This means, when rainfall level is 17.86 mm/h, the probability that vehicle speed
is between 40.10 and 67.74 mph is 0.95."
(e)

H0 : σ2 = 100
H1 : σ2 > 100

C2 = (7−2)σ̂2

100 ∼ χ2
n−2

= 2.0589
Because 2.0589< χ2

df=5,α=0.05 = 11.07, we cannot reject H0.
(f) Since rainfall is not specified, we assume x0 = x̄:

ŷ = β̂0 + β̂1x0
= 74.365−1.1449×17.86 = 53.92

Since Y is normally distributed with this mean and variance: σ̂
√

1 + 1
n + (x0−x̄)2

Sxx
= 6.85, we get

P (Y > 75) = 1−Φ(75−53.92
6.85 )

= 0.053
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and the probability that an individual driver will be traveling at 10 mph over the speed limit is
5.3%.

�

7.10 Problems
Problem 7.1 — Pedestrian Fatalities in Georgia. The number of yearly pedestrian fatalities in the
state of Georgia (Y ) is presented below for the years 2007-2013 (x= 1 means year 2007). Source.
Given the data summary, answer the following questions.

a) Find the linear regression model y = β̂0 + β̂1x and interpret the meaning of the estimated
parameters in this case.

b) Calculate σ̂2 and R2 and interpret their meaning.
c) Would you say there is statistical evidence suggesting an increasing trend in pedestrian

fatalities?
d) Use the model to test the hypotheses that the expected number of pedestrian fatalities in

2017 (x=11) will be less than 120.
e) Use the model to test the hypotheses that the true variance of the regression model is less

than 200.
Problem 7.2 — Seatbelt compliance in Georgia. Data for seatbelt compliance is presented below
for the years 2007-2013 (x = 1 means year 2007). Source. Given the data summary, answer the
following questions.

http://www.gahighwaysafety.org/research/ga-crashes/injuries/fatalities/
http://www.gahighwaysafety.org/research/ga-crashes/injuries/fatalities/
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a) Find the linear regression model for seatbelt compliance ŷ = β̂0 + β̂1x and interpret the
meaning of the estimated parameters in this case.

b) Calculate σ̂2 and R2 and interpret their meaning.
c) Would you say there is statistical evidence suggesting an increasing trend in seatbelt compliance

?
d) Use the model to test the hypotheses that the expected seatbelt compliance in 2017 (x=11)

will be less than 0.95.
e) Use the model to test the hypotheses that the true variance of the regression model is less

than 200.
Problem 7.3 —Washington low-income, transit-reliant residents. This article (https://goo.gl/omGFCd)
appeared recently on the Washington Post, analyzes the relationship between income and transit
usage in the D.C. area. The data can be summarized in the following figures.

The author of the article, however, did not give any statistical foundations to his observations and
conclusions, the most prominent of which is that “D.C. has a higher concentration of low-income,
transit-reliant residents than nearby counties in Virginia and Maryland."
You are asked to use the DC data and Virginia data to fill this gap by using the statistical techniques

https://www.washingtonpost.com/graphics/local/transit-access/?utm_term=.37b3d85820a0
https://1drv.ms/u/s!AqiKEoSG1Y54gdx6T-6NK7yBagct7A
https://1drv.ms/u/s!AqiKEoSG1Y54gdx9fZ988swa1NpXUw
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that you deem appropriate to verify/disprove the claims in this article. It is expected that you use
at least two techniques and that you compare and comment the results.
Problem 7.4 The figure shows the average global temperature (relative to the year 1921) from 1880
to 2005. Although it may seem obvious from the figure that the temperature is increasing at a
higher rate since the 70’s, many people believe that such an increase can be explained by random
fluctuations. The factor X denotes the number of years since 1879; i.e., 1880 corresponds to x = 1.

Sample ∑
xi

∑
yi

∑
xiyi

∑
x2
i

∑
y2
i n

1970-2005 3815 9.87 1180 419405 6.78 35
1880-1969 4186 -21.7 -693 255346 9.35 91
1880-2005 8001 -11.83 486 674751 16.13 126

a) Using the whole sample, test the hypotheses that global warming can be explained by
statistical fluctuations around a constant mean that does not grow in time.

b) Test the hypotheses that the global warming rate has increased since the 70’s (1970-2005)
compared to the rate in (1880-1969).

c) Provide a 95% confidence interval prediction for the global temperature for the year where
this interval would be the narrowest, and interpret the meaning of this interval.

d) It is believed that vehicle emissions, Z, are proportional to the square of the global temperature
due to the increased use of air conditioning. Estimate the probability that emissions in the
year 2017 will double the levels observed in year 2000.

Example 211. From the same survey on the previous question, here we fit a simpler model with
only one factor:

Yi = β0 +β1xi+ +εi
Based on the model estimation results summarized below,

a) What would you say are the problems of the fitted model? Clearly justify your answer in
each case.

b) As you can see from the scatter plot, the 95 percent confidence interval for Y when x= 40
is between 5 and 10. How can we interpret this interval?

c) Do you agree with the slope of the regression line? Why?



7.10 Problems 249


	Part I — Probability
	1 Basics of Probability
	1.1 Histograms
	1.2 Terminology and set theory
	1.3 Combinatorics: counting strategies when outcomes are equally likely
	1.4 Axioms of Probability
	1.5 Addition rule
	1.6 Conditional Probability
	1.7 Independent Events
	1.8 Law of Total Probability
	1.9 Bayes' Theorem
	1.10 More Problems

	2 Random Variables
	2.1 Probability distribution function
	2.2 Quantiles (aka percentiles)
	2.3 Discrete Random Variables
	2.4 Expectation
	2.5 Jointly Distributed Discrete Random Variables
	2.6 Covariance

	3 Continuous Random Variables
	3.1 Joint Continuous Variables

	4 Special Distributions
	4.1 Uniform Random Variable
	4.2 Normal Distribution
	4.3 Lognormal Distribution
	4.4 Bernoulli Family of Random Variables
	4.5 Poisson Random Variables
	4.6 Exponential Random Variable
	4.7 Gamma (Erlang) distributions are sums of exponentials
	4.8 The beta distribution: finite interval sample space
	4.9 The Bivariate Normal Distribution

	5 Function of Random Variables
	5.1 One Random Viable
	5.2 Two Random Viables
	5.3 Important distributions for statistics


	Part II — Statistics
	6 Normal Random Samples 
	6.1 Theoretical building blocks
	6.2 Confidence intervals
	6.3 Hypothesis Testing

	7 Linear regression
	7.1 The regression model
	7.2 Matrix notation
	7.3 The method of ordinary least squares (OLS)
	7.4 Testing the significance of coefficients
	7.5 Goodness-of-fit: R2
	7.6 Assessing the model
	7.7 Model selection
	7.8 Making predictions
	7.9 Simple linear regression
	7.10 Problems



