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10 Chapter 6. Normal Random Samples

6. Normal Random Samples
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The basic assumption in statistic is that the
random variable of interest, X, is distributed
across a population according to a known
distribution, typically Normal(µ,σ2).

Parameters µ and σ2 are unknown. Statistics is
all about estimating them using a sample, evaluat-
ing the potential errors when the sample is small,
testing hypotheses and making predictions using
the available data.



12 Chapter 6. Normal Random Samples

Random sample. A sample of size n is a realization x = (x1, . . . ,xn) of the random vector:

X = (X1, . . . ,Xn)

which we call a random sample in this chapter. We assume X1, . . . ,Xn to be independent and
identically distributed (iid) Normal random variables having expected value µ and variance σ2,
denoted as:

Xi
iid∼ N(µ,σ2), i= 1,2 . . .n. (6.1)
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Sample mean and sample variance

X̄ = 1
n

n∑
i=1

Xi The sample mean is the “best” estimator of µ

∼ N
µ, σ2

n

 and is normally distributed.

and

S2 = 1
n−1

n∑
i=1

(
Xi− X̄

)2
The sample variance, “best” estimator of σ2

= 1
n−1


 n∑
i=1

X2
i

−nX̄2

 (shortcut formula)

Proof. (Shortcut formula for S2)
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(n−1)S2 =
n∑
i=1

(
Xi− X̄

)2
=

n∑
i=1

(
X2
i + X̄2−2XiX̄

)

=
n∑
i=1

X2
i +

n∑
i=1

X̄2−2X̄
n∑
i=1

Xi

=
n∑
i=1

X2
i +nX̄2−2X̄(nX̄)

=
n∑
i=1

X2
i +nX̄2−2nX̄2

=
n∑
i=1

X2
i −nX̄2

Therefore,

S2 = 1
n−1

(
n∑
i=1

X2
i −nX̄2

)
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STOP! Law of large numbers: Since X̄ ∼N
(
µ,
σ2

n

)
then

X̄→ µ as n→∞

The standard error is the standard deviation of the sample mean:
SE = σ/

√
n or s/

√
n if σ is unknown.
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Example 1. The times between successive of vehicles arrivals at a toll booth were observed as
follows:

{1.2,3.0,6.3,10.1,5.2,2.4,7.1} in sec

(a) Find the sample mean
(b) Find the sample variance and the standard error

Solution: (a)

x̄ = 1.2 + 3.0 + 6.3 + 10.1 + 5.2 + 2.4 + 7.1
7

= 5.04
(b)

s2 =
∑7
i=1(xi− x̄)2

7−1
= 9.56

SE = s√
n

= 1.17
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6.1 Theoretical building blocks
6.1.1 The Z,T and C2-statistics

The standardized version of X̄ is the Z-statistic:
The Z-statistic

Z = X̄−µ
σ/
√
n
∼N (0,1)

STOP! The problem with the Z-statistic is that in practice the variance σ2 is not known.

Solution: use S2 instead.
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Fact 6.1 — The Chi-square distribution with r degrees of freedom, χ2
r. If Y1, Y2 , . . . ,Yr are inde-

pendent standard normal random variables, Yi ∼N(0,1), then
r∑
j=1

Y 2
j ∼ χ2

r.

Additive property: If Y1 ∼ χ2
r and Y2 ∼ χ2

s , and are independent, then

Y1 +Y2 ∼ χ2
r+s

Chi-Sqr probability tables.

The C2 statistic

C2 = (n−1)S2

σ2 ∼ χ2
n−1

http://kisi.deu.edu.tr/joshua.cowley/Chi-square-table.pdf
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Proof.

(n−1)S2 =
n∑
i=1

(
Xi− X̄

)2
=

n∑
i=1

(
(Xi−µ)− (X̄−µ)

)2

=
n∑
i=1

(Xi−µ)2−n
(
X̄−µ

)2

Dividing by σ2,

(n−1)S2

σ2 =
n∑
i=1

(
Xi−µ
σ

)2
−n

X̄−µ
σ

2

=
n∑
i=1

(
Xi−µ
σ

)2

︸ ︷︷ ︸
∼χ2

n

−

X̄−µ
σ/
√
n

2

︸ ︷︷ ︸
∼χ2

1

By the additive property of the chi-square distribution in Fact (6.1) the result follows. �
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Fact 6.2 — Student’s t-distribution. If U ∼N (0,1) and V ∼ χ2
r are independent, then

T = U√
V/r
∼ tr

has a t-distribution with r degrees of freedom.

t-distribution tables.

Fact 6.3 — Independence of X̄ and S2 for normal samples.. If X1, X2 , . . , Xn are independent,
identically distributed random variables with normal distribution N

(
µ,σ2

)
, then X̄ and S2 are

independent, and:

(i) X̄ ∼N

µ, σ2

n


(ii) (n−1)S2

σ2 ∼ χ2
n−1

http://www.math.odu.edu/stat130/t-tables.pdf
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The T-statistic

T = X̄ −µ
S/
√
n
∼ tn−1

Proof Recall that:

Z = X̄ −µ
σ/
√
n
∼N (0,1) , C2 = (n−1)S2

σ2 ∼ χ2
n−1

which are independent since X̄ and S2 are independent. It turns out that T can be expressed as:

T = Z√
C2/(n−1)

which corresponds to the definition of the t-distribution with n−1 degrees of freedom!
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6.1.2 Estimators
Parameters µ and σ2 are unknown, so how can we estimate them?

Suppose we have a random sample X = X1,X2, . . . ,Xn drawn from a distribution with some
parameter θ.

Estimators An estimator θ̂ of θ is a function of the observed data which (we hope) forms a
useful approximation of the parameter:

θ̂ = g(X1,X2, . . . ,Xn).

Note that θ̂ :
1. can depend only on the observed data, and not on any unknown parameters,
2. is itself a random variable, with a distribution, mean, variance, etc.
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Desirable properties of a “good” estimators
Unbiased: θ̂ is said to be unbiased if

E
(
θ̂
)

= θ,

Consistency: θ̂ is said to be consistent if θ̂→θ as n→∞

Efficiency (Minimum variance): θ̂A is said to be more efficient than θ̂B if

V
(
θ̂A
)
< V

(
θ̂B
)

Even if we assume unbiasedness and consistency to be desirable, it is possible to have more than
one such estimator.
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Example 2. — Show that X̄ and S2 are unbiased

E
(
X̄
)

= E
 1
n

n∑
i=1

Xi

= 1
n

n∑
i=1

E(Xi) = 1
n

n∑
i=1

µ

= µ

Now for S2,

(n−1)S2 =
n∑
i=1

(
Xi− X̄

)2
=

n∑
i=1

(
(Xi−µ)− (X̄−µ)

)2

=
n∑
i=1

(Xi−µ)2 −n
(
X̄−µ

)2
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Therefore,

E
[
(n−1)S2

]
= E

 n∑
i=1

(Xi−µ)2

−nE
[(
X̄−µ

)2]

=
n∑
i=1

V(Xi)−nV
(
X̄
)

= nσ2−nσ
2

n
= (n−1)σ2

Therefore,

E
(
S2
)

= σ2

which means that S2 is unbiased.
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6.2 Confidence intervals
Let X = (X1,X2, . . .Xn) represent a random sample, and x a realization. If

(
a(X), b(X)

)
is a

random interval such that

P
(
a(X)< θ < b(X)

)
= 1−α,

then a realization of that interval,
(
a(x), b(x)

)
is said to be a 100(1−α)% confidence interval for

the parameter θ.
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Interpretation of confidence intervals It is not easy to get to grips with what is meant by a
confidence interval. One cannot say:

“the parameter µ has probability (1−α) of lying within the calculated interval
(
a(x), b(x)

)
"

because that statement has no random variables.
The only viable interpretation is to say that we have used a procedure which, if repeated over
and over again, would give intervals containing the parameter 100(1−α)% of the time.
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Critical value zα. The symbol zα is the (1−α)−percentile of Z. Note that since the N(0,1) is
symmetric with respect to zero, so:

z1−α =−zα

−6 −4 −2 0 2 4 6
0

0.2

0.4

zα = 1.645
1−α = 0.95

N(0,1)

z

The most common value of α in use is 0.05, in which case:
zα = z0.05 = 1.654, zα/2 = z0.025 = 1.96
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6.2.1 Confidence intervals for µ
Two-sided 100(1−α)% confidence intervals. Since Z ∼N(0,1), and the definition of critical
values zα/2, it follows that

P
(
−zα/2 ≤ Z ≤ zα/2

)
= 1−α.

−6 −4 −2 0 2 4 6
0

0.2

0.4

−zα/2 =−1.96 zα/2 = 1.96
1−α = 0.95

z
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Since Z =

(
X̄ −µ

)
σ/
√
n

, then

P

−zα/2 ≤
(
X̄ −µ

)
σ/
√
n
≤ zα/2

 = 1−α

=⇒ P

(
X̄ − zα/2

σ√
n
≤ µ≤ X̄ + zα/2

σ√
n

)
= 1−α.

Hence the appropriate random interval is(
X̄ − zα/2

σ√
n
, X̄ + zα/2

σ√
n

)
, whose realization gives:

Confidence interval for µ when σ is known The 100(1−α)% confidence interval is(
x̄− zα/2

σ√
n
, x̄+ zα/2

σ√
n

)
.
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The margin of error is the half-width, h, of the confidence interval:

h= zα/2
σ√
n

If we solve for n in the above equation we obtain:
Sample size needed for a prescribed margin of error h:

n=
(σzα/2

h

)2
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Example 3. The times between successive arrivals of vehicles at a toll booth were observed as
follows:

{1.2,3.0,6.3,10.1,5.2,2.4,7.1} in sec

a) Find the sample mean and the sample standard deviation.

b) Find the 95%-confidence interval for µ when σ is assumed to be equal to the sample
standard deviation.

c) Find the margin of error.
d) Find the sample size needed to reduce the margin of error by a factor of two.

Solution:
a) Find the sample mean and the sample standard deviation.

x̄= 5.04, s=
√

9.56 = 3.1
b) Find the confidence interval for µ when σ is assumed to be equal to the sample standard

deviation.(
x̄− zα/2

σ√
n
, x̄+ zα/2

σ√
n

)
=
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c) Find the margin of error.
h= zα/2

σ√
n

=

d) Find the sample size needed to reduce the margin of error by a factor of two.

n=
(σzα/2

h

)2
=

�
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Recall that the only viable interpreta-
tion of confidence intervals is to say that
we have used a procedure which, if repeated
over and over again, would give intervals
containing the parameter 100(1−α)% of
the time.
This is shown in the figure, we were re-
peated the following procedure 100 times:

1. take a sample of size n= 7: in Excel
we generate seven random numbers
from the N(µ= 50,σ2 = 10) distribu-
tion.

2. compute the confidence interval with
the above recipe

3. plot all these intervals next to each
other

→ See and modify this chart in Excel

https://gtvault-my.sharepoint.com/:x:/g/personal/jlaval3_gatech_edu/Eb31xTa9Z5ZFin7Y9zf6SHMB0-LdOPU5Jm7HxIrmCZzlQg?e=GYaH36
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STOP! Unfortunately we do not know σ, so what should we do?

→ We replace σ by s, which boils down to replacing the Z-statistic with the T -statistic. Writing
tα/2 for the critical values from the distribution tn−1, we have

P

−tα/2 <
(
X̄ −µ

)
S/
√
n

< tα/2

= 1−α.

Re-arranging gives the random interval(
X̄ − tα/2

s√
n
, X̄ + tα/2

s√
n

)
,

and the 100(1−α)% confidence interval is a realization of this interval.
Confidence interval for µ when σ is unknown The 100(1−α)% confidence interval is(

x̄− tα/2
s√
n
, x̄+ tα/2

s√
n

)
.
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In some circumstances, it can make more sense to express the confidence interval in only one
direction – to either the lower or upper confidence limit.

One-sided CIs for µ when σ is unknown :
1. The 100(1−α)% lower confidence interval is(

−∞, x̄+ tα
s√
n

)
, Note: x̄+ tα

s√
n
is an upper bound.

2. The 100(1−α)% upper confidence interval is(
x̄− tα

s√
n
,∞

)
, Note: x̄− tα s√

n
is a lower bound.
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Example 4. The times between successive arrivals of vehicles at a toll booth were observed as
follows:

{1.2,3.0,6.3,10.1,5.2,2.4,7.1} in sec

a) Find the sample mean and the sample standard deviation.

b) Find the 95%-confidence interval for µ.
c) Find a margin of error.
d) Find the sample size needed to reduce the margin of error by a factor of two.

Solution:
a) Find the sample mean and the sample standard deviation.

x̄= 5.04, s=
√

9.56 = 3.1
b) Find the confidence interval for µ.(

x̄− tα/2
s√
n
, x̄+ tα/2

s√
n

)
=
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c) Find a margin of error.
h= tα/2

s√
n

=

d) Find the sample size needed to reduce the margin of error by a factor of two.

n=
(
stα/2
h

)2
=

�
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Example 5. — * Radioactive-carbon dating was undertaken on 8 samples from a single early site.

Sample Radiocarbon age
number determination
C-288 2419
M-26 2485
M-195 2575
M-911 2521
M-912 2451
Y-1279 2550
Y-1280 2540

Compute the two-sided and one-sided confidence intervals of the age of the site, and calculate
the sample size required to estimate the age to within ±10 years.
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Solution:
In order to estimate the age of the site, we estimate the mean of the distribution by the sample
mean and write

x̄= 2505.86
a) Two-sided CI:

Use a T -statistic to find a 95% confidence interval which gives a range of plausible values for
the mean age. This is(

x̄− tα/2
s√
n
, x̄+ tα/2

s√
n

)
,

and, putting in n= 7 and x̄= 2505.86, t0.025 = 2.447, from a t-distribution with 6 degrees of
freedom, s= 56.44, results in a 95% confidence interval of (2453.5, 2558.3), thereby giving a
range of *plausible* values for µ.

b) The 100(1−α)% lower confidence interval is(
−∞, x̄+ tα√

n
s

)
= (−∞ ; 2,547.31)

here t0.05 = 1.943.
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c) The 100(1−α)% upper confidence interval is

(2,464.4 ; ∞)

d) To simplify the sample size calculation, we assume a normal approximation to avoid the
dependency between tα/2 and the sample size, so that we can use:

n≈
(szα/2

h

)2
= 122

in this case, since h= 10 and zα/2 = 1.96.
Note: tα/2 = 1.98 for n= 122.

�
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Example 6. — * Confidence intervals for Proportion In an opinion poll prior to the 2016 US
Presidential election, out of 688 constituents chosen at random 368 said they would vote for
Hillary Clinton (53.5%). The newspapers typically use these data to estimate p, the probability
that a constituent selected at random would vote Clinton, but they rarely give any idea of the
quality of the estimate.
Calculate a 95% confidence interval for p.
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Solution:
First identify the random sample. Constituents questioned are labeled 1,. . . , 688. Let

Xi =
{

1, if ith constituent says "I will vote Clinton",
0, otherwise.

Then Xi ∼ Ber(p), and the sample size n is 688. Recall that for a Ber(p),

µ= E (Xi) = p

σ2 = V (Xi) = p(1−p)

We know that µ, and therefore p, can be estimated by the sample mean x̄= 368
688 = 0.535, and we

can use the usual confidence interval for the mean(
x̄− σ√

n
zα/2, x̄ + zα/2

σ√
n

)

assuming that the variance is known, σ2 ≈ x̄(1− x̄). This gives (0.498, 0.572) as a 95% confidence
interval for p, with point estimate 0.535. Margin of error = (0.572 -0.498)/2=0.037.
For 99% confidence we would use z0.005 = 2.576 to replace 1.960, and get a wider interval (0.486,
0.584) that is less accurate! Margin of error = (0.584 -0.486)/2=0.049. �
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Example 7. At a weigh station, the weighs of trailer trucks were observed before crossing a
highway bridge.
(a) Suppose observations on 30 trucks yielded a sample mean of 12.5 tons. Assume that the
standard deviation of truck weights is known to be 2.5 tons. Determine the two-sided 99%
intervals of the mean weight of trailer trucks on the particular highway.
(b) In part (a), how many additional trucks should be observed such that the mean truck weight
can be estimated to within ±1 ton with 99% confidence

Solution: (a)

CI = (x̄+ z0.005
σ√
n
, x̄+ z0.995

σ√
n

)

= (12.5−2.58× 2.5√
30
,12.5 + 2.58× 2.5√

30
)

= (11.3,13.7)

(b) Sample size calculation: n′ =
(σzα/2

h

)2
=
(

2.5×2.58
1

)2
= 42

So 42−30 = 12 additional observation of truck weights would be required.
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�
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Example 8. In a traffic study, the speed of vehicles are measured by laser guns for the purpose of
determining the mean vehicle speed on a particular city street. It is known that the posted speed
limit is 45 kph. The following results were obtained from ten test vehicles:

45, 39, 50, 41, 47, 42, 44, 48, 48, 44 kph

(a) Determine the 95% two-sided confidence interval of the mean vehicle speed.
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Solution: (a)

x̄ = 44.8
s2 = 1

10−1[
∑

x2
i −10× x̄2]

= 12.178
t0.025(r = 9) = 2.262

CI = x̄± t0.025×
s√
n

= 44.8± (2.262)× 3.49√
10

= (42.3 ;47.3)

�
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6.2.2 Confidence intervals for σ2

Recall: C2 = (n−1)S2

σ2 ∼ χ2
n−1. Therefore,

P
(
χ2

1−α/2 < C2 < χ2
α/2
)

= 1−α

where χ2
α/2 is the 1− α

2 quantile from the distribution χ2
n−1

0 2 4 6 8 10 12 14 16
0

0.1

0.2

r = n−1

χ2
1−α/2 χ2

α/2

1−α

c2

PF
D

of
χ

2 r
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Proceedings similarly as we did with the mean µ, we find:
The 100(1−α)% Confidence intervals for σ2 :
a) The two-sided CI:(n−1)S2

χ2
α/2

,
(n−1)S2

χ2
1−α/2


b) The lower CI:−∞, (n−1)S2

χ2
1−α


c) The upper CI:(n−1)S2

χ2
α

,∞


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Example 9. Suppose that n=9, x̄=51.2, and s=11.7. Find the 95% Confidence intervals for σ2.
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Solution: Here α =0.05, χ2
1−α/2 =2.18, χ2

α/2 =17.535, χ2
1−α =2.733, χ2

α =15.507 , which gives
a) The two-sided CI:(n−1)S2

χ2
α/2

,
(n−1)S2

χ2
1−α/2

= (62.6 ;503.6)

b) The lower CI:−∞, (n−1)S2

χ2
1−α

= (−∞ ;401.7)

c) The upper CI:(n−1)S2

χ2
α

,∞

= (70.8 ;∞)

�
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6.3 Hypothesis Testing
Basic example Suppose the throughput of a laptop production system, in number of laptops

per hour, was N(µ0 = 20,σ2 = 100) before an improvement performed to the system. We want to
see if the improvement was effective by testing the mean after improvement, µ.

The null hypothesis is

H0 : µ= µ0 no difference after the improvement

The alternative hypothesis H1 can be either:

a) H1 : µ 6= µ0 before and after are different (2-sided ), or
b) H1 : µ > µ0 new system is better (1-sided), or
c) H1 : µ < µ0 old system is better (1-sided).
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Example 10. A coin with probability µ of coming up tails is tossed and we hypothesize that it is
fair. Therefore:

H0 : µ= 1
2 vs H1 : µ 6= 1

2

Now, if there is reason to believe that the coin is biased towards tails (we suspect that µ > 1
2)

then:

H0 : µ= 1
2 vs H1 : µ > 1

2
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6.3.1 Basic t-test about µ
Recall that:

T = X̄−µ
S/
√
n
∼ tn−1

Suppose: H0 : µ= µ0. Then, under the null hypotheses we have that

T = X̄−µ0
S/
√
n
∼ tn−1 if H0 is true.

Key idea: We take a sample to observe a realization of the random variable T :

t0 = x̄−µ0
s/
√
n

If it falls “far from” its mean E(T ) = 0 then we reject H0, else we fail to reject it.
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The meaning of “far from” depends on the alternative hypothesis H1, and on the significance
level, α. Suppose we wanted to test

H0 : µ= µ0 against H1 : µ 6= µ0

In this case, we fail to reject H0 if: −tα/2 < t0 < tα/2 Why? because

P
(
−tα/2 < T < tα/2

)
= 1−α

means that if H0 is true then 100(1−α)% of the realizations of T should fall in that range.
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Summary of rejection regions:
a) if H1 : µ 6= µ0⇒ reject H0 if: |t0|> tα/2
b) if H1 : µ > µ0⇒ reject H0 if: t0 > tα
c) if H1 : µ < µ0⇒ reject H0 if: t0 <−tα

STOP! Not rejecting the hypothesis does not mean that there is strong evidence that

H0 is true. It is recommendable to use the terminology “reject hypothesis H0” or “not reject
hypothesis H0” but not to say “accept H0”.
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Example 11. — * In a traffic study, the speed of vehicles are measured by laser guns for the
purpose of determining the mean vehicle speed on a particular city street. It is known that the
posted speed limit is 45 kph. The following results were obtained from ten test vehicles:

45 39 55 50 47 45 44 48 51 44

(a) Determine the 95% two-sided confidence interval of the mean vehicle speed.
(b) Test the hypothesis that the vehicles are speeding at a 5% level of significance.
(c) If we wish to determine the mean vehicle speed to within ±1 kph with a 99% confidence,
what should be the sample size of our observations?
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Solution: (a)

x̄ = 46.8∑
x2
i = 22,082

s2 = 1
10−1[

∑
x2
i −10× x̄2] = 20

t0.025(r = 9) = 2.262
CI = x̄± t0.025×

s√
n

= 46.8± (2.262)× 4.47√
10

= (43.6 ;50)

(b) H0 : µ= 45, H1 : µ > 45

t0.05(r = 9) = 1.833

t0 = x̄−µ
s/
√
n

= 46.8−45
4.47/

√
10

= 1.27
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Since 1.27< 1.833 we fail to reject H0: “There is no evidence to suggest that vehicles are speeding”.
Note, we can’t say vehicles are not speeding.

(c) Sample size calculation: Here

h = 1
z0.995 = 2.58

so, n≈
(szα/2

h

)2
=
(

4.47×2.58
1

)2
= 133

The sample size should be 133. �
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Possible error in hypothesis testing. There are two types of possible error in hypothesis testing:
Type I error : rejecting the null hypothesis when it is, in fact, true.
Type II error : not rejecting the null hypothesis when it is, in fact, false.

H0 not rejected H0 rejected
H0 true no error Type I error
H0 false Type II error no error

Thus,

P (Type I error) = P (reject H0 |H0) = α
P (Type II error) = P (accept H0 |H1) = β.
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The p-value, denoted p:
1. probability of a test statistic, say T , taking a value at least as extreme as its observed

value t0, assuming H0 is true,
2. or equivalently: the smallest level α such that we would reject the null-hypothesis with the

observed data.

It depends on the alternative hypothesis:
• if H1 : µ > µ0⇒ p= P (T > t0 |H0)
• if H1 : µ < µ0⇒ p= P (T < t0 |H0)
• if H1 : µ 6= µ0⇒ p= 2min{P (T < t0 |H0),P (T > t0 |H0)}
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Three ways of testing hypotheses. For a null hypothesis µ= µ0, the following are a equivalent
procedures to reject H0:

1. the T-test t0 falls in the rejection region
2. the p-value < α
3. the (1−α)100% confidence interval does not contain t0:

|t0|> t ⇔ t0 /∈ (−tα/2, tα/2) ⇔ µ0 = x̄+ t0
s√
n
/∈
(
x̄− tα/2

s√
n
, x̄+ tα/2

s√
n

)
.

Hence we can see that there is an equivalence between the test and the interval.
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Example 12. — * Concrete placed on a structure was subsequently cored after 28 days, and the
following results were obtained of the compressive strengths from five test specimens:

4042, 3505, 3402, 3939, 3472 psi

(a) Determine the 90% two-sided confidence interval of the mean concrete strength.
(b) Suppose the confidence interval established in part (a) is too wide, and the engineer would like
to have a confidence interval to be ±300 psi of the computed sample mean concrete strength. Gen-
erally, more specimens of concrete would be needed to keep the same confidence level. However,
without additional samples, what is the confidence level associated with the specified interval
based on the five measurements given above?
(c) If the required minimum compressive strength is 3500 psi, test whether the concrete satisfies
these requirements by performing a one-sided hypothesis test at the 2% significance level.

Solution: (a) Sample mean:

x̄ = 4042 + 3505 + 3402 + 3939 + 3472
5

= 3672
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Sample standard deviation:

s =
√∑5

1(xi− x̄)
5−1

= 295.37

For a 90% two-sided confidence interval:

t0.05,4 = −2.1318
t0.95,4 = 2.1318

CI = (3672−2.1318295.37√
5

,3672 + 2.1318295.37√
5

)

= (3672−281.6,3672 + 281.6)
= (3390.4,3953.6)

(b) If the half-width of the confidence interval is 300, it means:

tα/2
295.37√

5
= 300

tα/2 = 2.2711



66 Chapter 6. Normal Random Samples

Refer to T-table with 4 deg. of freedom; we have:
t0.05 = 2.1318
t0.025 = 2.7764

We may use linear interpolation to get an approximate answer:

1−α/2 = 0.95 + (0.975−0.95)∗ 2.2711−2.1318
2.7764−2.1318

= 0.9554
⇒ α = 0.911

The required confidence level is 91.1%.
(c) If the required minimum compressive strength is 3500 psi, test whether the concrete satisfies
these requirements by performing a one-sided hypothesis test at the 2% significance level.

H0 : µ = 3500
H1 : µ < 3500

In this case, the test statistic will now be:

t0 = x̄−µ
s/
√
n

= 3672−3500
295.37/

√
5

= 1.302



6.3 Hypothesis Testing 67

With f = 5−1 = 4 d.o.f, we obtain the critical value of t at the 2% significance level to be tα ≈−3.
Therefore the value of the test statistic is outside of the region of rejection, hence the null hypothesis
cannot be rejected, and therefore we conclude that the concretes meet the minimum requirement.
�
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Example 13. — Shoshoni bead rectangles The table below gives width-to-length ratios for 20
rectangles, analyzed as part of a study in experimental aesthetics.

Table 6.1: Shoshoni bead rectangles

Width-to-length ratios
0.693 0.670 0.654 0.749
0.606 0.553 0.601 0.609
0.672 0.662 0.606 0.615
0.844 0.570 0.933 0.576
0.668 0.628 0.690 0.611

We want to test whether the Shoshoni instinctively made their rectangles conform to the golden
ratio. That is we want to test

H0 : µ= 0.618 against H1 : µ 6= 0.618.
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We have 20 measurements so, under the null hypothesis µ= 0.618 gives

T =
√

20(X̄−0.618)
S

∼ t(19) ,

where S2 = 1
20

20∑
i=1

(Xi− X̄)2. For these data, x̄= 0.660, s= 0.093, and the observed value of T is

t0 =
√

20(x̄−0.618)
s

=
√

20(0.660−0.618)
0.093 = 2.019

With r = 20− 1 = 19 d.o.f, we obtain the critical value of t at the 5% significance level to be
tα/2 ≈ 2.086. Therefore the value of the test statistic is too close to call. In fact, the p-value is
very close to α :

p−value= 2min{P (T < 2.019 |H0),P (T > 2.019 |H0)}= 0.058

This says that the case for it is very weak.
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6.3.2 Paired t-test
Suppose that we have pairs of random variables (Xi,Yi) and that Di =Xi−Yi , i= 1, . . . , n, is a
random sample from a normal distribution, i.e. D ∼N(µ,σ2) with unknown parameters. We use
the test statistic

T = D̄−µ0
SD/
√
n
∼ tn−1

under the null hypothesis H0 : µ= µ0. Here S2
D is the sample variance of the differences Di.
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Example 14. — Patients with glaucoma in one eye Here is we ask “Is there a difference in corneal
thickness between the eyes?”

Table 4.1 Glaucoma in one eye
Corneal thickness
Glaucoma Normal Difference

488 484 4
478 478 0
480 492 −12
426 444 −18
440 436 4
410 398 12
458 464 −6
460 476 −16

Formally we are testing the difference µ between the corneal thicknesses.
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H0 : µ= 0 against H1 : µ 6= 0.

The mean difference is d̄=−4 and the estimated standard deviation is sD = 10.744. Under H0
we obtain a t-statistic of

t0 = d̄−µ0
sD/
√
n

= −4
√

8
10.744 =−1.053.

With r = 8− 1 = 7 d.o.f, we obtain the critical value of t at the 5% significance level to be
tα/2 ≈ 2.365. Therefore the value of the test statistic is outside of the region of rejection, hence
the null hypothesis cannot be rejected, and therefore we cannot reject the null hypothesis of no
difference in corneal thickness.



6.3 Hypothesis Testing 73

−2.365 2.365

0.05

−1.053
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6.3.3 The two-sample t-test
Consider two random samplesX1, . . . ,Xm and Y1, . . . ,Yn which are independent, normally distributed
with the same variance. The null hypothesis is

H0 : µX = µY

Fact 6.8 Under H0 the test statistic T is such that

T = X̄− Ȳ

Sp

√√√√( 1
m

+ 1
n

) ∼ tm+n−2, (6.2)

where S2
p = (m−1)S2

X+(n−1)S2
Y

m+n−2 is known as the “pooled” variance.
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Proof.
Step 1 : Under H0,

X̄− Ȳ ∼N

0,σ2
(

1
m

+ 1
n

) , where σ2 is the common variance.

Step 2 : recall that
(m−1)S2

X

σ2 ∼ χ2
m−1,

(n−1)S2
Y

σ2 ∼ χ2
n−1

=⇒ (m−1)S2
X + (n−1)S2

Y

σ2 ∼ χ2
m+n−2

Step 3 : Thus, writing

S2
p = (m−1)S2

X + (n−1)S2
Y

m+n−2 ,

we obtain the result:

T = X̄− Ȳ

Sp

√√√√( 1
m

+ 1
n

) ∼ tm+n−2
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�
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Example 15. — Etruscan and Italian skull widths

Table 4.3 Ancient Etruscan and modern Italian skull widths
Ancient Etruscan skulls Modern Italian skulls

141 147 126 140 141 150 142 133 124 129 139 144 140
148 148 140 146 149 132 137 138 132 125 132 137 130
132 144 144 142 148 142 134 130 132 136 130 140 137
138 150 142 137 135 142 144 138 125 131 132 136 134
154 149 141 148 148 143 146 134 139 132 128 135 130
142 145 140 154 152 153 147 127 127 127 139 126 148
150 149 145 137 143 149 140 128 133 129 135 139 135
146 158 135 139 144 146 142 138 136 132 133 131 138
155 143 147 143 141 149 140 136 121 116 128 133 135
158 141 146 140 143 138 137 131 131 134 130 138 138
150 144 141 131 147 142 152 126 125 125 130 133
140 144 136 143 146 149 145 120 130 128 143 137

The width measurements are taken with the aim of comparing modern day Italians with ancient
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Etruscans. The null hypothesis is therefore that the mean skull width is the same. In what
follows X refers to Ancient Etruscan measurements and Y refers to Modern Italian.

x̄− ȳ = 11.33, m= 84, n= 70.

Using the formulas above, the value of the test statistic turns out to be T = 11.92>> tα/2 ≈ 1.98.
( As we are just asking “is there a difference?”, we need a 2-sided alternative hypothesis.) The test
provides overwhelming evidence to suggest that the two populations are ancestrally of different
origin.
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6.3.4 Pearson’s χ2 test (goodness-of-fit test)
This is a method for testing how well a particular distribution FX fits the histogram of a single
random variable X from a sample of size n. Hypothesis H0: We claim that

P(“Experiment falls in bin i”) = P(X ∈ bin i), i= 1, . . . ,k.

where P(X ∈ bin i) is calculated using FX . Let Oi be the observed number in bin i, i= 1,2, . . . ,k
and Ei be the expected number in bin i:

Ei = n ·P(X ∈ bin i) (6.3)

Pearson’s statistic is

Q=
k∑
i=1

(Oi−Ei)2

Ei
∼ χ2

k−1−np . (6.4)

where np is the number of parameters to be estimated, if any.

How large Q should be to reject the hypothesis? Reject H0 if Q> χ2
α(k−1−np). Further,

in order to use the test, as a rule of thumb one should check that nEi > 5 for all i.
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Example 16. — Flying bomb hits on London The number of flying bomb hits recorded in each of
576 small areas of 1

4km
2 in the south of London during World War II.

Flying bomb hits on London
Number of hits in an area 0 1 2 3 4 5 ≥ 6
Frequency 229 211 93 35 7 1 0

Propaganda broadcasts claimed that the weapon could be aimed accurately. If, however, this was
not the case, the hits should be randomly distributed over the area and should therefore be fitted
by a Poisson distribution. Is this the case?

Solution:
The first thing to do is estimate the the Poisson parameter. Since we know that E(X) = θ a good
candidate is:

θ̂ = x̄= 535
576 = 0.927
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Second, we pool small cells and we obtain

Number of hits in an area 0 1 2 3 ≥ 4
Frequency Oi 229 211 93 35 8
Expected frequency Ei 211.7 196.3 91. 28.1 7.9

and hence

Q=
k∑
i=1

(Oi−Ei)2

Ei
= 4.25

This is tested against χ2(r = 5−1−1) = 7.814. Clearly there is not a shred of evidence in favor of
rejection. We have therefore found no evidence to reject the hypothesis that the Poisson distribution
is a good model. Therefore, there is no evidence that V1 flying bomb could be aimed with any
degree of precision.

�
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Example 17. — Fair dice? In 1882, R. Wolf rolled a dice n= 20000 times and recorded the number
of eyes shown

Number of eyes i 1 2 3 4 5 6
Frequency Oi 3407 3631 3176 2916 3448 3422

Was his dice fair?

Solution: Sample space S = {1, . . . ,6} and let random variable X be the number shown. Since the
dice is assumed fair, all results are equally probable hence P(X ∈ bin i) = P(X = i) = 1/6.
In our example k = 6.
For Wolf’s data Q is

Q= 1.6280 + 26.5816 + 7.4261 + 52.2501 + 3.9445 + 2.3585 = 94.2

Since r = k−1 = 5 and the quantile χ2
0.05(r) = 11.1, we have Q> χ2

0.05(5) which leads to rejection
of the hypothesis of a fair dice. �
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