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4. Special Distributions
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4.1 Uniform Random Variable
Uniform Random Variable over the interval

(a,b) denoted as X ∼ U(a,b)

fX (x) =


1
b−a ; a < x < b

0 ; otherwise

FX(x) =


0 ; x < a
x−a
b−a ; a≤ x≤ b
1 ; b < x

E[X] = a+ b

2

V(X) = (b−a)2

12
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Example 1. Let

X ∼ U(a,b)

Show that

E[X] = a+ b

2

Solution:

E[X] =
∞̂

−∞

xf(x)dx

=
bˆ
a

x
1

b−a
dx= b2−a2

2(b−a)

= a+ b

2
�
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Example 2. Let

X ∼ U(a,b)

Show that

V(X) = (b−a)2

12

Solution:

E
[
X2
]

=
∞̂

−∞

x2f (x)dx=
bˆ
a

x2 1
b−a

dx= b3−a3

3(b−a)

= a2 +ab+ b2

3
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Therefore,

V(X) = E
[
X2
]
−E[X]2

= a2 +ab+ b2

3 −
(
a+ b

2

)2

= (b−a)2

12
�
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4.2 Normal Distribution
The normal distribution is arguably the most important distribution in statistics. It arises in nature
all the time due to the Central Limit Theorem. For instance, the CLT implies that the average
of random variables

U =
n∑
i=1

Xi

tends to the normal distribution regardless of the distribution of the Xi’s, as illustrated in the
following figure.
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The figure below shows the agreement of the CLT for the PDF of U = 1
n

n∑
i=1

Xi where the Xi ∼ fX .
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It can be seen that regardless of the initial distribution fX that CLT provides a good approximation
for n > 5.
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Normal Random Variable (aka Gaussian rv) A random
variable X is said to be a normal random variable,

X ∼N(µ,σ2)

if its probability density function is

fX (x) = 1√
2πσ

e
− (x−µ)2

2σ2 (4.1)

where µ and σ2 are parameters, and

E(X) = µ

V(X) = σ2

The CDF of a normal rv :

FX (x) =
xˆ

−∞

1√
2πσ

e
− (a−µ)2

2σ2 da

does not have an analytical solution and has to be ap-
proximated numerically.
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µ=−2,
σ2 = 1

X ∼N(µ,σ2)

x

STOP! The parameter µ indicates the “location”, and the parameter σ is a “scale”
parameter, determining how far it reaches from left to right.

Standard Normal Random Variable A random variable Z is said to be a standard normal random
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variable if µ= 0 and σ2 = 1: Z ∼N(0,1)

fZ(z) = 1√
2π
e−z

2/2

By convention, the standard normal CDF is denoted Φ(z) and not FZ :

Φ(z) = P(Z ≤ z)

=
zˆ

−∞

1√
2π
e−a

2/2 da

which does not have an analytical solution. It has been approximated with numerical integration
and tabulated in normal probability tables.
→ GeoGebra for interactive probability calculations.

http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf
https://www.geogebra.org/classic/probability
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Fact 4.1 If X ∼N(µ,σ2), then
Y = aX+ b

is normally distributed with parameters aµ+ b and a2σ2 : Y ∼N(aµ,a2σ2).

Proof.

FY (y) = P(Y ≤ y) = P(aX+ b≤ y) = P
(
X ≤ y− b

a

)
= FX

(
y− b
a

)

Therefore, differentiating,

fY (y) = 1
a
fX

(
y− b
a

)
= 1√

2πaσ
e
−

(
y−b
a −µ

)2

2σ2

= 1√
2πaσ

e
− (y−(aµ+b))2

2(aσ)2

which corresponds to the normal PDF (4.1) with parameters aµ+ b and a2σ2.
�
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Fact 4.2 — z-scores. If X ∼N(µ,σ2), then

Z = X−µ
σ

is normally distributed with parameters 0 and 1 : Z ∼N(0,1).

Note that quantiles are related by:

xα = µ+ zασ (4.2)

where zα = Φ−1(α) from the table.

Fact 4.3 Let Z be a standard normal random variable. Then,

Φ(−z) = 1−Φ(z)
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4.2.1 The Central Limit Theorem for sums
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Fact 4.4 — The Central Limit Theorem (CLT). The linear combination

U =
n∑
i=1

aiXi = aTX

with a = (a1, . . . ,an)T tends to the normal distribution as n→∞ with

E(U) =
n∑
i=1

aiµi = aTµ,

V(U) = aTΣXa

=
n∑
i=1

a2
iσ

2
i + 2

n∑
i=1

n∑
j=i+1

aiajσi,j︸ ︷︷ ︸
0 if Xi’s are independent
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where

ΣX = E
(
(X−µ)(X−µ)T

)
=


σ2

1 σ12 σ13 · · ·
σ21 σ2

2 σ23 · · ·
σ31 σ32 σ2

3 · · ·
... ... ... . . .


is the Covariance matrix.
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The figure below shows the agreement of the CLT for the PDF of U = 1
n

n∑
i=1

Xi where the Xi ∼ fX .
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It can be seen that regardless of the initial distribution fX that CLT provides a good approximation
for n > 5.
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4.2.2 How to read normal probability tables
→ Download a normal probability tables.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

N(0,1)
1.64

z

· · · 0.03 0.04 · · ·
...

1.5
1.6 0.9495
...

P(Z < z)

Normal Probability Table

→normal probability calculation with the TI 83/84.

http://www.stat.ufl.edu/~athienit/Tables/Ztable.pdf
https://mathbits.com/MathBits/TISection/Statistics2/normaldistribution.htm


28 Chapter 4. Special Distributions

Example 3. If X ∼N(µ,σ2) with µ= 1.7, σ2 = 0.12, calculate P(1.7<X < 1.8)

Solution:

1.2 1.4 1.6 1.8 2 2.2
0

2

4

µ= 1.7, σ2 = 0.12
P
(

1.7−µ
σ

< Z <
1.8−µ
σ

)

X

−6 −4 −2 0 2 4 6Z=X−µ
σ
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P(1.7<X < 1.8) = P
(

1.7−µ
σ

< Z <
1.8−µ
σ

)
= P(0< Z < 1)
= Φ(1)−Φ(0)
= 0.8413−0.5
= 0.3413

�
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4.2.3 The “68-95-99.7 Rule”

68.2%

95%

99.7%

34.1% 34.1% 13.6%13.6% 2.1%2.1%

−3σ −2σ −σ µ σ 2σ 3σ

−3 −2 −1 0 1 2 3
Z=X−µ

σ

X
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Example 4. With µ= 5 and σ = 1, the Rule says that about 95% lie between µ−2σ and µ+ 2σ,
which is the interval from 3 to 7.
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Example 5. The length of time required to complete a college test is found to be normally
distributed with mean 50 minutes and standard deviation 12 minutes.
(a) When should the test be terminated if we wish to allow sufficient time for 90% of the students
to complete the test?
(b) What proportion of students will finish the test between 30 and 60 minutes?
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Solution: Let X be the length of time to complete the test. Then Z = X−50
12 ∼N(0,1).

a) Need to find the 90th percentile, x0.9 = µ+ z0.9σ, with z0.9 = 1.28 from the table. So at least
x0.9 = 65.36 minutes should be given.

b) P (30<X < 60) = P (−1.67< Z < 0.83) = 0.75.
�
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Example 6. Let X be a normal random variable with parameters

µ= 3
σ2 = 9

Find
a) P(2<X < 5)
b) P(X > 3)

Solution:
a) Let

Z = X−µ
σ

Therefore, Z is a standard normal random variable.
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Therefore,

P(2<X < 5) = P
(

2−3
3 <

X−3
3 <

5−3
3

)

= P
(
−1

3 < Z <
2
3

)

= Φ
(

2
3

)
−Φ

(
−1

3

)

= Φ
(

2
3

)
−

1−Φ
(

1
3

)
≈ 0.3779

b) Let

Z = X−µ
σ

Therefore, Z is a standard normal random variable.
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Therefore,

P(X > 3) = P
(
X−3

3 >
3−3

3

)
= P(Z > 0)
= 0.5

�



4.2 Normal Distribution 37

Example 7. A school wishes to accept 2000 students for their freshman class, and they expect
20,000 applications. In order to make their admissions decisions very easy, the only criterion they
will use is SAT score. So, their goal is to accept a student if and only if their SAT score is in
the top 10%. However, because their computer system is so old, the applications only come in
one at a time, and they must decide whether to accept or reject before moving on to the next
application. Assuming that SAT scores are normally distributed with a mean of 1000 and a
standard deviation of 200, how should they set the score threshold to end up with as close to
2000 students as possible? Give your answer first symbolically (in terms of a pdf, cdf, etc), then
use a normal distribution table to provide a numerical answer.
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Solution: We want to find the SAT score x such that 90% of scores are below x and 10% of scores
are above x.
We look through the table for the value closest to 0.90, and find that in a standard normal
distribution, P (X ≤ 1.28) = 0.8997 and P (X ≤ 1.29) = 0.9015. We’ll use the first value because its
probability is closer to 0.9.
Hence, the cutoff should be placed 1.28 standard deviations above the mean. This is

1000 + 200(1.28) = 1256 points.

�
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Example 8. — * Traffic congestion occurs when the demand exceeds the capacity of the system.
The current airplane traffic demand at an airport (number of takeoffs and landings per hr) during
the peak hours of each day is a normal variate with a mean of 200 planes and a standard
deviation of 50 planes.
(a) If the present runway capacity (for landings and take-offs) is 350 planes per hour, what is the
current probability of traffic congestion at this airport? Assume that there is one peak hour per
day
(b) If the mean traffic demand increases 10% each year, with the c.o.v. remaining constant, what
would be the probability of congestion at the airport in 10 yrs?
(c) If the projected growth of traffic demand is correct, what airport capacity will be required in
10 yr to maintain the current probability of congestion?

Solution: Answer: (a) 0.00135 (b) 0.69146 (c) 700

(a)

P (congestion) = 1−φ(350−200
50 )

= 0.00135
(b) Mean: 200× (1 + 10%×10) = 400
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standard deviation: 50·400
200 = 100

P (congestion) = 1−φ(350−400
100 )

= 0.69146

(c) New capacity:

Capacity = 400 + 3×100
= 700

�
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Example 9. — Travel time from point A and to point B In the transportation network below, let

Xi =the travel time on link i= 1,2 . . .5

Astart

C

D B2

i= 1

3

4
5

From historical records we have good estimations of means, variances and co-variances:

i µi σi δi
1 10. 2. 0.2
2 11. 3.3 0.3
3 11. 3.3 0.3
4 4. 0.8 0.2
5 10. 2. 0.2

ΣX =

4. 0.66 0.66 0.16 0.4
0.66 10.89 7.62 0.26 0.66
0.66 7.62 10.89 1.06 0.66
0.16 0.26 1.06 0.64 0.16
0.4 0.66 0.66 0.16 4.
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a) what is the fastest route from A to B?
b) what is the probability that route A D B is faster than A C B?
c) what is the probability that route A D B is faster than A C D B?
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Solution:
a) what is the fastest route from A to B?

Let:
Route 1: A→D→B
Route 2: A→ C→B
Route 3: A→ C→D→B
Ti = Travel time on route i= 1,2,3.
Then,

T1 =X2 +X3
T2 =X1 +X5
T3 =X1 +X3 +X4

Since travel times are the sum of normal random variables,
Ti ∼N

(
E(Ti),V(Ti)

)
with:

E(T1) = µ2 +µ3 = 22
E(T2) = µ1 +µ5 = 20
E(T3) = µ1 +µ3 +µ4 = 25
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and

V (T1) = 2σ2,3 +σ2
2 +σ2

3 = 37.
V (T2) = 2σ1,5 +σ2

1 +σ2
5 = 8.8

V (T3) = 2σ1,4 + 2σ1,3 + 2σ4,3 +σ2
1 +σ2

4 +σ2
3 = 19.28

T1

T2

T3

10 15 20 25 30 35 40
min

0.05

0.10

0.15

Distribution of travel times

Route 2 is the fastest on average, but for risk-taking people Route 1 could be beneficial.
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b) what is the probability that Route 1: A D B is faster than Route 2: A C B?

P(T1 < T2) = P(T1−T2 < 0), let Y = T1−T2
= P(Y < 0) = 0.376726

Since Y is a linear combination of T1−T2, it is also normally distributed Y ∼N
(
E(Y ),V(Y )

)
with:

E(Y ) = E(T1)−E(T2) = 2
V(Y ) = V(T1) + V(T2)−2Cov(T1,T2) = 40.54

make sure you understand the negative sign!

Cov(T1,T2) = σ1,2 +σ1,3 +σ2,5 +σ3,5 = 2.64

from the covariance matrix.
c) what is the probability that Route 1 is faster than Route 3: A C D B?
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Similar to the previous answer, but now:

Cov(T1,T3) = σ1,2 +σ1,3 +σ2,3 +σ2,4 +σ3,4 +σ2
3 = 21.2

and P(T1−T3 < 0) = 0.788644
�
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Example 10. — Travel time from point A and to point B (again) In the transportation network
below, let

Xi =the travel time on link i= 1,2 . . .5

Astart

C

D B2

i= 1

3

4
5

From historical records we have good estimations of means, variances and co-variances:
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i µi σi δi
1 10. 1. 0.1
2 12. 3.6 0.3
3 13. 3.9 0.3
4 4. 0.4 0.1
5 10. 1. 0.1

ΣX =

1. 0. 0. 0. 0.
0. 12.96 9.83 0. 0.
0. 9.83 15.21 0.62 0.
0. 0. 0.62 0.16 0.
0. 0. 0. 0. 1.




a) what is the fastest route from A to B?
b) what is the probability that route A D B is faster than A C B?
c) what is the probability that route A D B is faster than A C D B?
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Solution:
a) what is the fastest route from A to B?

Let:
Route 1: A→D→B
Route 2: A→ C→B
Route 3: A→ C→D→B
Ti = Travel time on route i= 1,2,3.
Then,

T1 =X2 +X3
T2 =X1 +X5
T3 =X1 +X3 +X4

Since travel times are the sum of normal random variables,
Ti ∼N

(
E(Ti),V(Ti)

)
with:

E(T1) = µ2 +µ3 = 25
E(T2) = µ1 +µ5 = 20
E(T3) = µ1 +µ3 +µ4 = 27
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and

V (T1) = 2σ2,3 +σ2
2 +σ2

3 = 47.8
V (T2) = 2σ1,5 +σ2

1 +σ2
5 = 2

V (T3) = 2σ1,4 + 2σ1,3 + 2σ4,3 +σ2
1 +σ2

4 +σ2
3 = 17.6

T1

T2

T3

10 15 20 25 30 35 40
min

0.05

0.10

0.15

0.20

0.25

0.30

Distribution of travel times

Route 2 is the fastest on average, but for risk-taking people Route 1 could be beneficial.
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b) P(T1−T2 < 0) = 0.239367
c) P(T1−T3 < 0) = 0.702722

�
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Example 11. — * Bob and John are traveling from city A to city D. Bob decides to take the upper
route (through B), whereas John takes the lower route (through C) as shown in the following
figure:
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The travel times (in hours) between the cities indicated are normally distributed as follows:

T1 ∼ N(8,4)
T2 ∼ N(5,1)
T3 ∼ N(5,4)
T4 ∼ N(7,4)

Although the travel times can generally be assumed to be statistically independent, T3 and T4
are dependent with a correlation coefficient of 0.8.
(a) What is the probability that John will not arrive in city D within 12 hours?
(b) What is the probability that Bob will arrive in city D earlier than John by at least 1 hour?
(c) Which route (upper or lower) should be taken if one wishes to minimize the expected travel
time from A to D? Justify.

Solution: (a)
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Let TJ be John’s travel time in hours:
TJ = T3 +T4
µTJ = 5 + 7 = 12
σTJ =

√
4 + 4 + 2×0.8×2×2

= 3.795
Hence

P (TJ < 12) = Φ(12−12
3.795 )

= Φ(0)
= 0.5

(b)
Let TB be Bob’s travel time in hours:

TB = T1 +T2
µTB = 8 + 5 = 13
σTB =

√
4 + 1

=
√

5
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Hence

P (TJ −TB > 1) = P (TB−TJ + 1< 0)

Now let R = TB−TJ + 1;R is normal with

µR = µTB −µTJ + 1 = 2
σR =

√
σ2
TB

+σ2
TJ

=
√

19.4

Hence

P (R < 0) = Φ( 0−2√
19.4

)

= Φ(−0.454)
= 0.326

(c)Since the lower route (A-C-D) has a smaller expected travel time and variance one could take the
lower route to minimize expected travel time from A to D. But a risk-seeking person might want to
take the longer route with higher variance. �
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Example 12. — * The daily revenue X of a store is the sum of the amounts paid by each customer
i,Yi during one day. These amounts Yi have a mean and variance of $15 and ($15)2.
(a) Write down an equation relating X and the amounts paid by each customer during one day.
(5 points)
(b) On a given day, 100 customers purchased items in the store. Approximate the probability
that the daily revenue exceeded 1250. (15 points)

Solution: (a)Let: n: Total number of customers
Yi: Amount paid by each customer
Equation relating X and the amounts paid by each customer during one day:

X =
n∑
i=1

Yi

(b) According to the question, Yi follows exponential distribution:

µYi = 15
σYi = 15
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Because X =∑100
i=1Yi, according to CTL, X follows normal distribution with:

µX = 15×100
= 1500

σX = 15×
√

100
= 150

The probability that the daily revenue exceeded 1250:

P (X > 1250) = 1−Φ(1250−µX
σX

)

= 1−Φ(−1.67)
= 0.953

�
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4.3 Lognormal Distribution

X ∼ LogN(λ,ξ2),X > 0↔ logX ∼N(λ,ξ2)

λ= E(logX) , ξ2 = V(logX)

The PDF is

f(x) = 1√
2πξx

e−(log(x)−λ)2/2ξ2
,x > 0

The mean and variance are:

E(X) = eλ+ξ2/2

V(X) = e2λ+ξ2
(eξ

2
−1)

and hence the coefficient of variation squared is

δ2
X = eξ

2
−1

≈ ξ2 when ξ2 is small, say ξ < 1/3.

Note: λ= logx0.5
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X
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STOP! The parameters λ and ξ are generally not given and need to be calculated first.

Typically, there are the following situations:
1. if we are given µX ,σ

2
X :

δ2
X = σ2

X/µ
2
X (4.3)

ξ2 = log(1+ δ2
X) or ξ2 = δ2

X if δ2
X is small, say < 1/3. (4.4)

λ= logµX − ξ2/2 (4.5)

2. if we are given x0.5, δX :

ξ2 = log(1+ δ2
X) or ξ2 = δ2

X if δX is small, say < 1/3. (4.6)
λ= logx0.5 (4.7)

Once the parameters λ and ξ are determined, we can calculate probabilities using the standard
normal tables:

P(X < x) = P(logX < logx) = Φ
(

logx−λ
ξ

)
(4.8)
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because logX ∼N(λ,ξ2).
Percentiles xα can also be obtained from the standard normal percentiles, zα:

xα = eλ+zα·ξ (4.9)

This is because, by definition, P(X < xα) = α, and in this case we have:

P(X < xα) = P(logX < logxα)

= Φ
(

logxα−λ
ξ

)
= α

the last equality implies that logxα−λ
ξ is the standard normal percentile, zα and (4.9) follows.
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Example 13. Lifetimes of a certain component are lognormally distributed with its median 3
days and parameter ξ = 0.5 days.
(a) Find the mean lifetime of these components
(b) Find the standard deviation of the lifetimes

Solution: Answer: (a) 3.40 (b) 1.81
(a) λ= log(x0.5) = log(3)
µX = eλ+ 1

2ξ
2 = 3.40

(b) δX =
√
eξ

2−1 = 0.533
σX = δXµX = 0.533×3.40 = 1.81

�
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Example 14. — Time between inspections. The time T between breakdowns of a major equipment
in an oil platform follows a lognormal distribution with a median of 6 months and a coefficient of
variation of 30 percent.
What should be the interval t∗ between inspections and repairs in order to ensure a 95 %
probability that the equipment will be operational at any time.
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Solution:
We need P(T > t∗) = 0.95 or equivalently P(T < t∗) = 0.05 which means that t∗ is the 5th percentile:

t∗ = t0.05 = eλ+z0.05·ξ

which gives 3.66 months. �
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Example 15. — * An office building is planned and designed with a lateral load-resisting structural
system for earthquake resistance in a seismic zone. The seismic capacity (in term of force factor)
of the proposed system has a mean of 6.5 and c.o.v. 29.8% and is assumed to have a Lognormal
distribution.
(a)What is the estimated probability of damage to the office building when subjected to 5.5-
magnitude earthquake?
(b)If the building survived (without any damage) a previous 4.0-magnitude earthquake, what
would be its future probability of no damage under a 5.5-magnitude earthquake? (Assume that
after the moderate earthquake the building remains in its original condition)
(c)What is the seismic capacity’s 85th percentile ?

Solution: Answer: (a) 0.341 (b) 0.708 (c) 8.47
Random variable X: seismic capacity
Given µX = 6.5 and δX = 0.298
We have σX = µXδX = 1.937
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We have δX < 0.3 so,
ξ = δX

= 0.298
λ = logµX −

1
2ξ

2

= 1.827
Or you can do

ξ =
√

log(1 + δ2
X

)
= 0.292

λ = logµX −
1
2ξ

2

= 1.829
(a) The probability of damage on a 5.5-magnitude earthquake is,

P (X < 5.5) = Φ(log5.5−λ
ξ

)

= Φ(−0.41)
= 0.341
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(b)

P (X > 5.5|X > 4) = 1−P (X < 5.5)
1−P (X < 4)

= 1−0.341
1−Φ( log4−λ

ξ )
= 0.708

(c)

P (X < x85) = Φ(log(x85)−λ
ξ

)

= 0.85

Referring to standard normal table: Φ(1.04) = 0.85

x85 = e1.04ξ+λ

= 8.47

�
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4.3.1 The Central Limit Theorem for products
Fact 4.5 For a set of positive random variables Xi, i= 1,2 . . .n, the product

U =
n∏
i=1

Xai
i

tends to the lognormal distribution as n→∞ with parameters:

λU = aTλ =
n∑
i=1

aiλi,

ξ2
U = aT(ΣlogX)a =

n∑
i=1

a2
i ξ

2
i + 2

n∑
i=1

n∑
j=i+1

aiajξi,j︸ ︷︷ ︸
0 if Xi’s are independent
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where

a = (a1,a2, . . .an)T

λi = E(logXi)
λ = (λ1,λ2, . . .λn)T

logX = (logX1, logX2, . . . logXn)T

and:

ΣlogX = E
(
(logX−λ)(logX−λ)T

)
=


ξ2

1 ξ12 ξ13 · · ·
ξ21 ξ2

2 ξ23 · · ·
ξ31 ξ32 ξ2

3 · · ·
... ... ... . . .


is the Covariance matrix of the logXi, i.e. ξij = Cov

(
logXi, logXj

)
and ξ2

i = V(logXi).
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Note: If the Xi’s have the lognormal distribution, this result is exact, otherwise it is an approxi-
mation.

Proof. logU =
n∑
i=1

ai logXi is a linear combination so by the CLT for linear combinations, for large
n:

logU ∼N(E(logU) ,V(logU))
with:

E(logU) =
n∑
i=1

aiE(logXi)

= aTλ,
V(logU) = aT(ΣlogX)a

=
n∑
i=1

a2
i ξ

2
i + 2

n∑
i=1

n∑
j=i+1

aiajξi,j︸ ︷︷ ︸
0 if Xi’s are independent

By definition of lognormal random variables we conclude the result. �
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The figure below shows the agreement of the CLT for the distribution of the geometric average
of n random variables Xi ∼ fX , ie:

U =
n∏
i=1

X
1
n
i

for 3 distributions fX and different values n.
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It can be seen that regardless of the initial distribution fX that CLT provides a good approximation
for n > 5.

A corollary of Fact 4.5: If X ∼ LogN(λ,ξ2) then

Y = cX ∼ LogN(logc+λ,ξ2)

for any constant c. To see this, simply treat the constant as a lognormal rv with zero variance.
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Example 16. Let:

U = 7.58
√
X1X2

3
X2

3√X4

Suppose the Xi’s are independent and that we have the following information:

i Xi µi δi
1 X1 7. 0.19
2 X2 3. 0.05
3 X3 3. 0.28
4 X4 1. 0.81

(a) Approximate the mean and variance of U .
(b) Approximate P(U < 94)

Solution: (a) Using equations (4.3) we can calculate:
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i Xi µi δ2
i σi λi ξ2

i ai
1 X1 7. 0.036 1.33 1.93 0.035 1/2
2 X2 3. 0.003 0.15 1.1 0.002 −1
3 X3 3. 0.078 0.84 1.06 0.075 2
4 X4 1. 0.656 0.81 −0.25 0.504 −1/3

and according to the CLT for products, we have that U tends to the lognormal distribution
parameters:

λU = logc+
n∑
i=1

aiλi,

= log(7.58) + 1.93
2 −1.1 + 2×1.06 + 0.25

3 = 4.0938

ξ2
U =

n∑
i=1

a2
i ξ

2
i

=
(

1
2

)2
0.035 + (−1)20.002 + 220.075 +

(
−1

3

)2
0.504 = 0.36675

and the mean and variance of U are approximately:

E(U) = eλU+ξ2
U/2 = 72.04
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V(U) = e2λU+ξ2
U (eξ

2
U −1) = 2299.26

(b) Assuming U ∼ LogN(λU , ξ2
U ):

P (U < 94) = Φ(log94−λU
ξU

) = Φ(0.742155)

= 0.771003

�
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Example 17. Let:

W = 1.46X1X2
4

X2
2
√
X3

Suppose the Xi’s are independent and that we have the following information:

i Xi µi δi
1 X1 4. 0.74
2 X2 1. 0.94
3 X3 1. 0.65
4 X4 7. 0.06

(a) Approximate the mean and variance of W .
(b) Approximate P(W < 4110)

Solution: (a) Using equations (4.3) we can calculate:
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i Xi µi δ2
i σi λi ξ2

i ai
1 X1 4. 0.5476 2.96 1.17 0.4367 1
2 X2 1. 0.8836 0.94 −0.32 0.6332 −2
3 X3 1. 0.4225 0.65 −0.18 0.3524 −1

2
4 X4 7. 0.0036 0.42 1.94 0.0036 2

and according to the CLT for products, we have that W tends to the lognormal distribution
parameters:

λW = log( 1
2 ·32.2) +

n∑
i=1

aiλi,

= 1.09134

ξ2
W =

n∑
i=1

a2
i ξ

2
i

= 0.148124

and the mean and variance of W are approximately:

E(W ) = eλW+ξ2
W /2 = 2190.43
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V(W ) = e2λW+ξ2
W (eξ

2
W −1) = 98,759,027

(b) Assuming W ∼ LogN(λW , ξ2
W ):

P (W < 4110) = Φ(log4110−λW
ξW

) = Φ(0.0188)

= 0.507

�
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Example 18. — * The hydraulic head loss in a pipe may be determined by the Darcy-Weisbach
equation as follows:

H = fLV 2

2Dg

where:
L=length of a pipe, V=flow velocity of water in a pipe, D=pipe diameter, f=coefficient of friction,
g=gravitational acceleration=32.2 ft/sec2. Suppose a pipe has the following properties:

i Xi µi δi
1 L 100. 0.1
2 D 1. 0.1
3 f 0.02 0.2
4 V 10. 0.15

(a) Approximate the mean and standard deviation of the hydraulic head loss of the pipe.
(b) Approximate P(H<3ft) [Hint: CLT]

Solution: (a) Using equations (4.3) we can calculate:
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i Xi µi δ2
i σi λi ξ2

i ai
1 L 100. 0.01 10. 4.6 0.01 1
2 D 1. 0.01 0.1 0. 0.01 −1
3 f 0.02 0.04 0.004 −3.93 0.0392 1
4 V 10. 0.0225 1.5 2.29 0.0223 2

and according to the CLT for products, we have that H tends to the lognormal distribution
parameters:

λH = log( 1
2 ·32.2) +

n∑
i=1

aiλi,

= 1.09134

ξ2
H =

n∑
i=1

a2
i ξ

2
i

= 0.148124

and the mean and variance of H are approximately:

E(H) = eλH+ξ2
H/2 = 3.20722
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V(H) = e2λH+ξ2
H (eξ

2
H −1) = 1.64227

(b) Assuming H ∼ LogN(λH , ξ2
H):

P (H < 3) = Φ(log3−λH
ξH

) = Φ(0.0188)

= 0.507

�
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Example 19. Repeat the example above with a pipe with the following properties:

i Xi µi δi
1 L 100. 0.05
2 D 1. 0.15
3 f 0.02 0.25
4 V 9. 0.2

(a) Approximate the mean and standard deviation of the hydraulic head loss of the pipe. (ans:
2.67501, 1.96151)
(b) Approximate P(H<3ft) (ans: 0.684)
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Example 20. — Stock Price Distribution For a given stock, let:
Pt = stock price at time period t= 1,2, . . .
Rt = (Pt−Pt−1)/Pt−1 = rate of return for time period t
St = Pt/Pt−1 = 1 +Rt= return for time period t

Show that the stock price Pt tends to the lognormal distribution. Assume that P0 is the current
stock price, ie a constant.

Solution: Note:

Pt = P0(1 +R1)(1 +R2) . . .(1 +Rt)

= P0
t∏

j=1
Sj

By the CLT for products P0
∏t
j=1Sj tends to the LogN(λt, ξ2

t ) with parameters:

λt = log[P0] +
t∑

j=1
E[logSj ], ξ2

t =
t∑

j=1
V [logSj ]

Typically, t = 0 is the present and we assume that future returns S1,S2, . . . will have a common
distribution (estimated with historical data). This implies that E[logSj ] and V [logSj ] are constants,
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say λ and ξ, independent of the time period j = 1,2 . . . Therefore,

λt = log[P0] + tλ, ξ2
t = tξ2 (4.10)

If the returns St’s have the lognormal distribution, this result is exact, otherwise it is an approxima-
tion.
The figure below shows weekly stock prices for 6 tech companies in 2017, and it can be seen that
the lognormal distribution is a good approximation.
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Returns : Log-Normal Normal
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Furthermore, one may use the results in this example to produce a price forecast; in the case of
Netflix we get:
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�
Practice questions

1. On December 31st 2017, what is the probability that Netflix stock price will exceed $350 on
February 15 2018?

2. On July 1st, what is the probability that Netflix stock price will exceed $150 on October 1st
2017?

3. what is the probability that Google stock price will exceed Apple’s in two more weeks?
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4.4 Bernoulli Family of Random Variables
• Bernoulli
• Binomial and multinomial
• Geometric and negative binomial
Bernoulli trial: An experiment with only two outcomes: the value 1 (success) with probability p

and 0 (failure) with probability 1−p. For example,
• Toss a coin. Outcomes: heads or tails.
• Roll a die. Outcomes: even or odd.
• Draw a card. Outcomes: ace or not ace.
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Bernoulli random variable A random variable X is said to be a Bernoulli random variable with
parameter p:

X ∼ Ber(p)
if its probability mass function is given by

pX (x) =
{
p, x= 1
q = 1−p, x= 0

and

E(X) = p

V(X) = pq
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Example 21. — Indicator Random Variables Let X be the random variable such that

X =
{

1 if event A occurs
0 otherwise

Find the mean and variance of X in terms of P(A).

Solution: Sense the probability of success here is p= P(A), we have:

E(X) = P(A)
V(X) = P(A)(1−P(A))

�
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4.4.1 Binomial random variable
Consider n independent Bernoulli trials with probability of success p, and probability of failure
q = 1− p. If X represents the number of successes that occur in the n Bernoulli trials,
then X is said to be a binomial random variable with parameters (n,p).
Examples of binomial random variables are:
• Toss a coin 10 times. Let X be the number of heads.
• Roll a die 6 times. Let X be the number of even rolls.
• Draw 4 cards. Let X be the number of aces. (Is this binomial?)
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X is the number of successes in n Bernoulli trials.

X ∼ Bin(n,p)

The PMF pX (x) = P(X = x) is

pX (x) =
(
n

x

)
px(1−p)n−x (4.11)

and

E(X) = np

V(X) = npq
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↓ ↓ ↓
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Notice that the CDF FX (x) = P(X ≤ x) does not simplify:

FX (x) =
x∑
i=1

(
n

i

)
pi(1−p)n−i (4.12)

The name for this random variable comes from the binomial theorem:
Fact 4.7 — The Binomial Theorem. Let n be a nonnegative integer and let a and b be any real
numbers. Then

(a+ b)n = an+
(
n

1

)
an−1b+

(
n

2

)
an−2b2 + · · ·+

(
n

n−1

)
abn−1 + bn

=
n∑
i=0

(
n

i

)
aibn−i.
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Example 22. Consider the experiment of tossing 4 fair coins. Let X be the random variable
that denotes the number of heads that result. The sample space for this experiment is illustrated
in the table below, which also shows the number of heads in each possible case.

coin 1 H H H H H H H H T T T T T T T T
coin 2 H H H H T T T T H H H H T T T T
coin 3 H H T T H H T T H H T T H H T T
coin 4 H T H T H T H T H T H T H T H T
ΣH 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0

a) Find the CDF and PMF of X and draw sketches of each one.
b) Determine the median, upper quartile and lower quartile and show them graphically in one

of the sketches of part a)
c) Determine P(0<X ≤ 3 | X ≤ 2)
d) BONUS: suppose two players play this game, and the one with the largest number of Hs

wins. Let X1 and X2 denote their corresponding random variables, the distribution of each
one corresponding to the one you calculate it in part a). Find the joint PMF and the
probability that player one wins by more than one point. Hint: X1 and X2 are independent.

Solution:
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a) Find the CDF and PMF of X and draw sketches of each one.

X ∼ Bin(n= 4,p= 1/2)
→ pX (x) =

(4
x

)
0.5x(1−0.5)4−x =

(4
x

)
0.54 =

(4
x

)
/16, or:

pX (x) =


1/16 if x= 0 or x= 4
4/16 if x= 1 or x= 3
6/16 if x= 2
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b) Determine the median, upper quartile and lower quartile and show them graphically in one of
the sketches of part a): {2, 3, 1}

c) P(0<X ≤ 3 | X ≤ 2) = 0.91
d) BONUS: suppose two players play this game, and the one with the largest number of Hs wins.

Let X1 and X2 denote their corresponding random variables, the distribution of each one
corresponding to the one you calculate it in part a). Find the joint PMF and the probability
that player one wins by more than one point. Hint: X1 and X2 are independent.
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�

Fact 4.8 — The sum of n Bernoulli trials has a Bin(n,p) distribution. If Y1,Y2, . . . ,Yn are independent
Bernoulli random variables,

Yi ∼ Ber(p)
for all i, and we define

X =
n∑
i=1

Yi

then, by definition, X ∼ Bin(n,p). This fact makes it easier to compute the mean and variance of
X by using the results we know for linear combinations.

Recall the experiment of tossing 4 fair coins, if we let H=1 and T=0 we can clearly see the
connection between Binomial and Bernoulli random variables:

coin 1,Y1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
coin 2,Y2 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
coin 3,Y3 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
coin 4,Y4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
X =∑n

i=1Yi 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0
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Fact 4.9 — Two important corollaries. :
1. The normal approximation

X ∼N(µ= np,σ2 = npq)

is accurate when n it is large enough (by the CLT).
2. The sum of two binomial random variables with the same parameter p is also binomial:

if X1 ∼ Bin(n1,p) and X2 ∼ Bin(n2,p)→X1 +X2 ∼ Bin(n1 +n2,p)

The figure below shows the agreement of the normal approximation with the Bin(n,p) rv for
different values of parameters (n,p).
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Continuity Correction
We saw that the normal approximation to a binomial random variable X ∼ Bin(n,p) is:

X ∼N(µ= np,σ2 = npq)

is accurate when n it is large enough. Then, one can use

P (a≤X ≤ b)≈ Φ
(
b−µ
σ

)
−Φ

(
a−µ
σ

)
. (4.13)

However, the error can be substantial if n is not very large. One way to improve the approximation
is to use the continuity correction:

P (a≤X ≤ b)≈ Φ
(
b+0.5−µ

σ

)
−Φ

(
a-0.5−µ

σ

)
. (4.14)

Analogous continuity corrections apply to the Poisson distribution, in which case µ= θ,σ2 = θ.
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Example 23. A die is rolled 5 times. What is the probability that the result is 6, 3 times?

Solution: Let X be the number of times 6 appears.
Therefore,

X ∼ Bin
(

5, 16

)

Therefore,

P(X = i) =
(
n

i

)
pi(1−p)n−i

∴ P(X = 3) =
(

5
3

)(
1
6

)3(5
6

)3

�
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Example 24. A player bets on a number from 1 to 6, both including. Three dice are then rolled.
If the number bet on by the player appears i times where i= 1,2,3, he wins i units. If the number
bet on by the player does not appear on any of the dice, he loses 1 unit.
A game is considered to be fair if the expected value for the player is at least 0. Is this game fair
towards the player?

Solution: Let X be the player’s winnings.
Let Y be the number of times the number the player bet on appeared. Therefore,

Y ∼ Bin
(

3, 16

)
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Therefore,
P(X =−1) = P(Y = 0)

=
(

3
0

)(
1
6

)0(5
6

)3

= 125
216

P(X = 1) = P(Y = 1)

=
(

3
1

)(
1
6

)1(5
6

)2

= 75
216

P(X = 2) = P(Y = 2)

=
(

3
2

)(
1
6

)2(5
6

)1

= 15
216

P(X = 3) = P(Y = 3)

=
(

3
3

)(
1
6

)3(5
6

)0

= 1
216
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Therefore,

E[X] = (−1)
(

125
216

)
+ (1)

(
75
216

)
+ (2)

(
15
216

)
+ (3)

(
1

216

)

=− 17
216

Therefore, as the expected value of the winnings is less than 0, the game is not fair towards the
player. �



4.4 Bernoulli Family of Random Variables 105

Example 25. Tests show that about 20% of all private wells in some specific region are contami-
nated. What are the probabilities that in a random sample of 4 wells exactly 2, fewer than 2, or
at least 2 wells are contaminated?
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Solution: Here n= 4, p= 0.2 (success for being contaminated). We find

P(X = 2) =
(4

2
)
0.220.84−2 = 0.1536 ,

P(X < 2) = P(X = 0) + P(X = 1) =
(4

0
)
0.200.84 +

(4
1
)
0.210.83 = 0.8192 ,

P(X ≥ 2) = P(X = 2) + P(X = 3) + P(X = 4)
= 0.1536 +

(4
3
)
0.230.81 +

(4
0
)
0.240.80 = 0.1808 .

�
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Example 26. — Tornadoes, take 3 100 structures are located in a region where tornado wind
force must be considered in its design. Suppose that from the records of tornadoes for the past
200 years, it is estimated that

1. during any given week, at most 1 tornado can occur with probability p= 1/30,
2. the number of tornadoes in different weeks are independent, and
3. if a tornado occurs, a structure will be damaged if the wind speed exceeds the structure

design wind speed of 130 mph,
4. wind speeds have a median of 90 mph, a coefficient of variation of 20 percent, and follow

the lognormal distribution.
Determine the following:

a) the probability that the structure will be damaged this during a tornado?
b) what is the probability the a structure will be damaged in the next year?
c) calculate the mean and variance of the number of structures damaged in the next five years?
d) If you’re a contractor in charge of rehabilitating the structures in the region after a tornado

damage, compute the mean and variance of your yearly income, U , if you charge c dollars
per rehabilitation work.

e) calculate the coefficient of variation of your yearly income, and comment.
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Solution:
a) the probability that the structure will be damaged this during a tornado?

Let Y be the wind speeds during a tornado,

Y ∼ LogN(λ= log90, ξ2 = 0.22)

and the desired probability is
r = P(Y > 130) = 0.033

b) what is the probability the a structure will be damaged in the next year?

Let X be the rv representing the number of tornadoes on a given year, then

X ∼ Bin(n= 52,p= 1/30)

Let D the event that a structure will be damaged in one year.
Since we don’t know the number of tornadoes that will occur, we use the total probability
rule:
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P(Dc) =
n∑
x=0

P(Dc|X = x)P(X = x)

=
n∑
x=0

(1− r)xP(X = x)

=
n∑
x=0

(1− r)x
(
n

x

)
px(1−p)n−x

=
n∑
x=0

(
n

x

)
((1− r)p)x(1−p)n−x

= (1− rp)n = 0.944

and the desired probability is 1-0.944=0.0556. The last step follows from the binomial theorem
(4.7) with a= (1− r)p,b= 1−p.

STOP! Notice that this solution method proves that a simpler way to do this type

of problems is to let Z be the rv representing the number of tornadoes that cause
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damage to a structure on a given year, then

Z ∼ Bin(n,pr)

and the desired probability is also P(Z > 0) = 1− (1− rp)n = 0.0556.

c) solved in class
d) solved in class
e) solved in class

�
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4.4.2 The Multinomial distribution
This is a generalization of the binomial distribution:

1. k possible outcomes,
2. each occurs with probability pi, with

∑k
i=1 pi = 1

3. Ni = number of observations yielding the ith outcome, i= 1,2 . . .k
The (joint) distribution of the random vector N = {N1, ...,Nk} is

P(n1, ...,nk) = n!
n1! · · ·nk!

k∏
i=1

pnii

and:

E(Ni) = npi

V(Ni) = npi(1−pi)
Cov

(
Ni,Nj

)
=−npipj

Fact 4.10 — Marginal distributions. Ni ∼ Bin(n,pi)
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Example 27. Suppose that 60% of the supply of raw material kits used in a chemical reaction
can be classified as recent, 30% as moderately aged, 8% as aged, and 2% unusable. 16 kits are
randomly chosen to be used for 16 chemical reactions. Let N1,N2,N3,N4 denote the number of
chemical reactions performed with recent, moderately aged, aged, and unusable materials.

a) Find the probability that exactly one of the 16 planned chemical reactions will not be
performed due to unusable raw materials.

b) Find the probability that 10 chemical reactions will be performed with recent materials, 4
with moderately aged, and 2 with aged materials.

c) Do you expect N1 and N2 to be positively or negatively correlated? Explain intuitively.
d) Find Cov(N1,N2).
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Example 28. Suppose that 60% of the supply of raw material kits used in a chemical reaction
can be classified as recent, 30% as moderately aged, 8% as aged, and 2% unusable. 16 kits are
randomly chosen to be used for 16 chemical reactions. Let N1,N2,N3,N4 denote the number of
chemical reactions performed with recent, moderately aged, aged, and unusable materials.

a) Find the probability that exactly one of the 16 planned chemical reactions will not be
performed due to unusable raw materials.

b) Find the probability that 10 chemical reactions will be performed with recent materials, 4
with moderately aged, and 2 with aged materials.

c) Do you expect N1 and N2 to be positively or negatively correlated? Explain intuitively.
d) Find Cov(N1,N2).

Solution: (a) According to Fact 4.10, N4 ∼ Bin(16,0.02). Thus, P (N4 = 1) = 16(0.02)(0.98)15 =
0.2363.
(b) P (N1 = 10,N2 = 4,N3 = 2,N4 = 0) = 16!

10!4!2!0.6
100.340.082 = 0.0377.

c) Expect them to be negatively related: The larger N1 is, the smaller N2 is expected to be.
d)Cov(N1,N2) =−16(0.6)(0.3) =−2.88.

�
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4.4.3 Geometric Random Variables
Let X be the number of Bernoulli trials required until the first success occurs, then

X ∼Geo(p)

The PMF pX (x) = P(X = x) is

pX (x) = qx−1p

with q = 1−p, and

E(X) = 1/p
V(X) = q/p2

The CDF is given by:

P(X ≤ x) = 1− qx

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

pX(x) = qx−1 ·p

x

p= 0.4
p= 0.8

1st success

trial #0 1 2 3 . . . . . . . . . x . . .

↓
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STOP! The return period T . In the case of geometric random variables where the

underlying Bernoulli trial is repeated in regular time intervals (e.g. every day, weekly, once a
year...), the mean value E(X) is also called the return period T , and therefore

p= 1
T

For example, if a system is designed to withstand the 100-year earthquake, the implicit
assumption is that (i) the Bernoulli trial is repeated once a year, and (ii) the time between
earthquakes has the geometric distribution with parameter p= 1/100.
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Fact 4.11 — Connection between the Geo( p) and Bin(n,p) distributions. If

Y ∼ Bin(n,p), # of successes in n trails
X ∼Geo(p), # of trials until first success

then, from the picture:

P(X > n) = P(Y = 0)

=
(
n

0

)
p0qn−0

= qn

1st success

trial #0 1 2 3 . . . n x . . . .

↓

Therefore, the CDF of the geometric distribution FX (x) is given by:

P(X ≤ x) = 1− qx (4.15)
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Fact 4.12 — Memoryless Property of the Geometric Distribution. Let i, j be positive integers.
X ∼Geo(p). Then

P (X > i+ j|X > i) = P (X > j)

trial #

0 .
i

. .
i+ j

.
j

This means that, if i represents the present trial number, all that matters for a geometric rv is the
number of additional trials j until the first success, which also has the Geo(p) distribution.



118 Chapter 4. Special Distributions

Proof.

P (X > i+ j|X > i) = P ({X > i+ j}∩{X > i})
P (X > i)

= P (X > i+ j)
P (X > i)

= q(i+j)

qi
= qj

= P (X > j)

�
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Example 29. — The height above sea level of a fixed offshore platform is designed to withstand
the 20-year wave height. Determine

a) in one year, what is the probability that the platform will be flooded?
b) the probability that the platform will be subjected to the design wave height within the

return period ?
c) the probability that the first exceedance of the design wave height will occur after the third

year?
d) If the first exceedance of the design wave height should occur after the third year, what is

the probability that such a first exceedance will occur in the fifth year?
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Solution:
a) in one year, what is the probability that the platform will be flooded?

Since the return period is 20 years, the design wave height will be exceeded with p= 1/20 = 5%
probability each year.

b) the probability that the platform will be subjected to the design wave height within the return
period ?

Let X be the number of years until the next flooding. Therefore,

X ∼Geo(1/20)→ P(X ≤ 20) = 1− (1−1/20)20 = 0.6425

c) the probability that the first exceedance of the design wave height will occur after the third year?

P(X > 3) = 1−P(X ≤ 3) = 0.953

d) If the first exceedance of the design wave height should occur after the third year, what is the
probability that such a first exceedance will occur in the fifth year?

P(X = 5|X > 3) = 0.048
�
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STOP! Approximation for rare events. Solution b) above for the probability that the

first event (flooding) happens within one return period, can be simplified to

P(X ≤ T )≈ 1−e−1 = 0.6321

in the case of events with long return period T , by virtue of the identity

lim
T→∞

(1− 1
T

)T = e−1
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Example 30. — * 8.5-magnitude earthquakes in the city of San Diego, CA, have a return period
of 30 years. Houses and tall buildings can suffer structural damage during such an earthquake
with probabilities 50 and 20 percent, respectively.
(a) Find the probability of damage in 100 years using the Bernoulli model where one trial = one
year.
(b) Find the probability that in 100 years there will be more than 2 damages to any particular
structure.
(c) If there are 1000 houses and 950 buildings in the region, find the probability that within 100
years there will be more structural damage to buildings than houses.
(d) BONUS: If you’re a contractor in charge of rehabilitating the structures in the region, compute
the probability that your yearly income, U , will exceed 1,000,000 dollars if you charge 10,000
and 200,000 thousand dollars per rehabilitation of houses and tall buildings, respectively.

Solution: a) Assume that if the building was not damaged after an earthquake it remains in its
original condition.
Probability of occurrence of earthquake in a certain year:

p = 1
T

= 1/30
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Probability of damage if an earthquake happens:

r1 = 0.5 (houses)
r2 = 0.2 (buildings)

Probability of damage in one year:

p1 = r1p= 0.0166667 (houses)
p2 = r2p= 0.0066667 (buildings)

Let X1 and X2 be the number of years between earthquakes that produced damage to a given house
and building, respectively. Then,

Xi ∼Geo(pi)→ P(Xi ≤ 100) = 1− (1−pi)100

which gives that the probability of damage during the next 100 years are 0.186241 and 0.512272 for
a house and building, respectively.

(b) Find the probability that in 100 years there will be more than 2 damages to any particular
structure.
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Let random variable Yi be the number of damages in 100 years of a structure of type i. Then,

Yi ∼Bin(100,pi)→ P(Yi ≥ 2) = 1−P(Yi < 2)

which gives 0.233259 and 0.0297029 for a house and building, respectively.

(c) if there are n1 = 1,000 houses and n2 = 950 buildings, find the probability that within 100 years
there will be more structural damage to buildings than houses.

Let W1 and W2 be the number of damages in 100 years of ALL structures of type i. Then,

Wi =
ni∑
j=1

Yi,j

∼ N(niE(Yi),niV(Yi)) by the CLT

where

E(Yi) = 100pi
V(Yi) = 100piqi
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Finally, P(W2 >W1) = P(W2−W1 > 0), which gives ≈ 0 in this case. We used

W2−W1 ∼N

E(W2)−E(W1)︸ ︷︷ ︸
=−33.3

,V(W2) + V(W1)︸ ︷︷ ︸
=1284.7


(d) BONUS: If you’re a contractor in charge of rehabilitating the structures in the region, compute
the probability that your yearly income, U , will exceed 1,000,000 dollars if you charge 10,000 and
200,000 thousand dollars per rehabilitation of houses and tall buildings, respectively.

Here, we are interested in

U =
1000∑
j=1
×10,000Y1,j +

950∑
j=1

200,000×Y2,j

By CLT and linearity of expectation we get

U ∼N

E(U)︸ ︷︷ ︸
1,433

, V(U)︸ ︷︷ ︸
253,283


in thousands of dollars. The final answer is 0.80539. �
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Example 31. Alice eats cookies one after another until she finds and a chocolate cookie. For each
cookie, the probability of the cookie being a chocolate cookie is 1

10 .
1. What is the probability that Alice eats more than 3 cookies?
2. Given that Alice has already eaten 5 cookies, and has not found a chocolate cookie, what is

the probability that she will eat at least 8 more cookies?

Solution:
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1.

P(X > 3) =
∞∑
k=4

P(X = k)

=
∞∑
k=4

(
1− 1

10

)k−1( 1
10

)

=
(

1− 1
10

)3 ∞∑
j=1

(
1− 1

10

)j−1( 1
10

)

=
(

9
10

)3( 1
10

) 1
1− 9

10


=
(

9
10

)3
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2.

P(X ≥ 13|X > 5) = P(X > 12|X > 5)

= P(X > 12∩X > 5)
P(X > 5)

= P(X > 12)
P(X > 5)

=

(
9
10
)12

(
9
10
)5

=
(

9
10

)7

= P(X > 7)

Therefore, the fact that Alice has already eaten 5 cookies does not affect the probability of her
eating at least 8 more cookies.

�
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Example 32. A test of weld strength involves loading welded joints until a fracture occurs. For a
certain type of weld, 80% of the fractures occur in the weld itself, while the other 20% occur in
the beam. A number of welds are tested. Let X be the number of tests up to and including the
first test that results in a beam fracture.

(a) Find P(X=3)
(b) Find the mean and variance of X

Solution: Answer: (a) 0.128 (b) 5, 20
(a)

P (X = 3) = (0.8)20.2
= 0.128

(b) X follows the geometric distribution: X ∼Geo(0.2)
E(X) = 1

0.2 = 5 V (X) = 1−0.2
0.22 = 20

�
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4.4.4 Negative Binomial Random Variable
Here X is the number of Bernoulli trials required until the r-th success occurs.

X ∼ NB(r,p)

The PMF of X is

P(X = n) =
(
n−1
r−1

)
pr(1−p)n−r

E(X) = r/p

V(X) = rq/p2 0 5 10 15 20
0

0.2

0.4

x

PMF

p= 0.5, r = 1
p= 0.5, r = 5
p= 0.8, r = 5

(r−1) events ∼ Bin(n−1,p) rth event at trial # x

trial #0 1 2 3 . . . . . . . . . x . . .

↓↓ ↓ ↓
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→ P(X = n) =
(
n−1
r−1

)
pr−1(1−p)n−r ·p

=
(
n−1
r−1

)
pr(1−p)n−r
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Example 33. Find the expected value and variance of the number of time one must throw a die
until the outcome 1 has occurred four times.

Solution: Let X be the number of times the die must be thrown for 1 to occur four times. Therefore,

X ∼ NB
(

4, 16

)
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Therefore,

E[X] = r

p

= 4
1
6

= 24

V(X) = r(1−p)
p2

=
4
(
1− 1

6
)

(
1
6
)2

= 120

�

Fact 4.13 Let

Xi ∼Geo(p)
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be independent random variables, for i ∈ N. Then,
n∑
i=1

Xi ∼ NB(n,p)
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4.4.5 Hypergeometric Random Variable
A hypergeometric experiment:
1. A sample of size n is randomly selected without replacement from a population of N items.
2. In the population, k items can be classified as successes, and N −k items can be classified

as failures.
Let X be the number of successes in the n trails:

X ∼ HG(n,N,k)

The probability distribution of X is

P(X = i) =

(
k
i

)(
N−k
n−i

)
(
N
n

)
E[X] = nk

N

V(X) = n
k

N

(
1− k

N

)(
N −n
N −1

)
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Example 34. Suppose we randomly select 5 cards without replacement from an ordinary deck of
playing cards. What is the probability of getting exactly 2 red cards (i.e., hearts or diamonds)?

Solution: We know the following:
N = 52; since there are 52 cards in a deck.
k = 26; since there are 26 red cards in a deck.
n = 5; since we randomly select 5 cards from the deck.
i = 2; since 2 of the cards we select are red.

P(X = i) =

(
k
i

)(
N−k
n−i

)
(
N
n

) = 0.32513

�
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Example 35. An extensive study undertaken by the National Highway Traffic Safety Administra-
tion reported that 17% of children under 5 use no seat belt, 29% use adult seat belt, and 54%
use child seat. Set N1,N2,N3 for the number of children using no seat belt, adult seat belt, and
child seat, respectively. In a sample of 15 children under five. Find:

a) the probability that exactly 10 children use child seat?
b) the probability that exactly 10 children use child seat and 5 use adult seat?
c) the probability that exactly 8 children use child seat, 5 use adult seat and 2 use not seat

belt?
d) Cov(N1,N2).
e) Cov(N1,N2 +N3).
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Solution: office hours :)
�
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4.5 Poisson Random Variables
A discrete random variable X, taking one of the values 0,1,2, . . . , is said to be a Poisson random
variable with parameter θ > 0 if:

X ∼ Poi(θ)

The PMF of X is

pX(x) = e−θθx

x!

and

E(X) = θ

V(X) = θ
0 10 20 30 40 50

0.00

0.05

0.10

0.15

x

PMF

θ = 5
θ = 10
θ = 20
θ = 30
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In a Poisson Process events occur at a given rate

λ = number of events per unit of time

(or distance t, or area, or volume, or population, etc.). Then,

X = # of events in (0, t)
∼ Poi(λt),

Note that the Poisson parameter θ = λt has no units.

1st event

time0 tt1 t2 t3

↓ ↓ ↓
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Fact 4.14 — The Poi(θ) rv as a limit of a Bin(n,p). Let θ = np be fixed. Then the binomial PMF
tends to the Poisson PMF,

lim
n→∞

(
n

x

)
px(1−p)n−x = e−xθx

x!
This means that the Poisson distribution will be appropriate whenever the rv can be thought of
as a Bin(n,p) rv with large n and small p.

Therefore the Poisson distribution inherits the 2 important properties of the binomial distribution:
1. The normal approximation

X ∼N(θ,θ)
is accurate when θ it is large enough (by the CLT).

2. The sum of two Poisson random variables with parameters θ1 and θ2 is also Poisson:

if X1 ∼ Poi(θ1) and X2 ∼ Poi(θ2)→X1 +X2 ∼ Poi(θ1 + θ2)



142 Chapter 4. Special Distributions

Proof. Express the binomial probability in terms of the parameter θ:

lim
n→∞

(
n

x

)
px(1−p)n−x = lim

n→∞

(
n

x

)(
θ

n

)x(
1− θ

n

)n−x

= lim
n→∞

n!
x!(n−x)!θ

x

(
1
n

)x(
1− θ

n

)−x(
1− θ

n

)n

= θx

x! lim
n→∞

n!
(n−x)!

1
(n− θ)x

(
1− θ

n

)n

= θx

x! lim
n→∞

n!
(n−x)!

1
(n− θ)x

(
1− θ

n

)n
From calculus, we know that

lim
n→∞

(
1− θ

n

)n
= e−θ

and
lim
n→∞

n!
(n−x)!

1
(n− θ)x = lim

n→∞
n(n−1) . . .(n−x+ 1)

(n− θ)(n− θ) . . .(n− θ) = 1

�



4.5 Poisson Random Variables 143

The normal approximation as a function of θ:
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Example 36. Consider an experiment that consists of counting the number of α-particles given
off by a gram of radioactive material. If it is known that on average, 32 such α-particles are
emitted in 20 seconds, what is the probability that no more than 2 α-particles will be emitted
in two second?

Solution: Let X be the number of α particles emitted in two second. Here λ= 32/20 and t= 2s,
so the Poisson parameter

θ = λt= 3.2
Therefore,

X ∼ Poi(3.2)

and,

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)

= e−3.2θ0

0! + e−3.2θ1

1! + e−3.2θ2

2!
≈ 0.3799

�



4.5 Poisson Random Variables 145

Example 37. An LCD display has 1920×1080 pixels. A display is accepted if it has 15 or fewer
faulty pixels. The probability that a pixel is faulty from production is 5×10−5.
(a) Find the proportion of displays that are accepted.
(b) Find the pixel failure rate required to produce 4000×2000 pixel displays and still have an
acceptance rate of at least 90%.

Solution: Since there is a large number n of Bernoulli trials where the probability p of success is small
, we can use the Poisson random variable with parameter θ = np= 1920×1080×5×10−5 = 103.68.
X: number of pixels that are faulty
(a)

P (Accepted) = P (X ≤ 15)

=
15∑
x=0

θxe−θ

x!

=
15∑
x=0

(103.68)xe−103.68

x!
= 1.44×10−27



146 Chapter 4. Special Distributions

(b) Assume λ is the pixel failure rate required:

P (Accepted) = P (X ≤ 15)

=
15∑
x=0

(λt)xe−λt
x!

=
15∑
x=0

(λ×4000×2000)xe−λ×4000×2000

x!
= 0.9

λ = 1.39×10−6

�
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Example 38. Consider that earthquakes occur with the assumptions of Poisson distributions, with
λ= 2 earthquakes per week.

a) Find the probability that at least three earthquakes occur during the next two weeks.

Solution:
a) Let X be the number of earthquakes occurring in two weeks. Therefore,

X ∼ Poi(4)

Therefore,

P(X ≥ 3) = 1−
(
P(X = 0) + P(X = 1) + P(X = 2)

)
= 1−

e−440

0! + e−441

1! + e−442

21


= 1−13e−4

�
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Example 39. Since 1851, exactly 116 hurricanes have hit Florida In 2005, Florida was hit by
four hurricanes: Cindy, Dennis, Katrina, and Wilma. If the probability of hurricane strikes has
remained the same since 1851, what is the probability of Florida being struck by four or more
hurricanes in the same year?
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Solution:
This is a classic Poisson distribution. We’ve assumed that the probability of hurricane strikes
has remained the same (In reality, a bad assumption)., hence our rate is 116 hurricanes per
2016−1851 + 1 = 166 years. As the question asks about a year time frame, we have to adjust the
rate:

θ = 116
166 ×1.

Now, the probability of four or more hurricanes in the same year is

1−
3∑

k=0
P (X = k) = 1−

3∑
k=0

θke−θ

k! ≈ 0.005719 = 0.57%.

Notice that the return period of this event is 1/0.005719≈ 175: this is a “1 in 200 years” type of
event. �
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Example 40. In the solutions manual to a Calculus textbook, there is about one faulty solution
per fifty questions. In a book with ten chapters, each with one hundred questions, what is the
probability that there are at least 15 faulty solutions in the whole book? Give your answer two
ways: first with a binomial distribution, then with a Poisson approximation. Use Wolfram Alpha
or some other tools to find both answers numerically, and compare them.
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Solution: This is exactly a binomial distribution, and approximately a Poisson distribution.
A “success” is a faulty solution, hence p= 1/50 = 0.02. There are 1000 total problems, and so the
probability that at least 15 are faulty is

P (X ≥ 15) =
1000∑
k=15

(
1000
k

)(
1
50

)k(49
50

)1000−k
≈ 0.89747 = 89.7%.

Using a Poisson approximation, the rate (which needs to have “per book” as its unit measurement)
is

θ = np= 20 (avg faulty solutions in 1 book).

Hence,

P (X ≥ 15) =
1000∑
k=15

θke−θ

k! = 0.89513 = 89.5%.

�
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Example 41. — ** A structure is located in a region where tornado wind force must be considered
in its design. Suppose that from the records of tornadoes for the past 20 years, the mean
occurrence rate of tornadoes in the region is once every 10 years. Assume that the occurrence of
tornadoes can be modeled as a Poisson process. The structure is designed to withstand a tornado
force with an allowable probability of damage of 5%. (10 points)
(a) What is the distribution (and parameter(s)) of Y = the number of times the structure is
damaged due to tornadoes in the next 50 years? Assume that if the structure is damaged it is
immediately retrofitted to its original condition.
(b) What is the probability that the structure will be damaged in the next 50 years? (10 points)
(c) Suppose that there are 100,000 similar structures in a country. Assuming statistical indepen-
dence among these structures, what is the distribution (and parameter(s)) of Z = the number of
structures in the country that suffer damage due to tornadoes in the next 50 years ? What is
P(Z<22,000)? (20 points)

Solution: Answer: (a) Pois(0.25) (b) 0.2212 (c) Bin(100000,0.2212), 0.1814

(a) The mean occurrence rate of tornado is 1
10 , and the structure is designed to withstand a

tornado force with an allowable probability of damage of 5%.
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So we have:

λ = 1
10 ×5%

= 0.005
t = 50
θ = λt

= 0.005×50
= 0.25

Y ∼ Pois(0.25)

(b)

P (Y ≥ 1) = 1−P (Y = 0)
= 1− e−θ

= 1− e−0.25

= 0.2212
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(c) Z ∼Bin(100000,0.2212)
Use normal approximation:

E(Z) = np= 100000×0.2212 = 22120
V (Z) = npq = 100000×0.2212× (1−0.2212)

= 17727.056
σZ =

√
V (Z) = 131.252

P (Z < 22000) = Φ(22000−E(Z)
σZ

)

= Φ(−0.91)
= 0.1814

�
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4.6 Exponential Random Variable
A random variable X is said to be a exponential random variable over the interval (0,∞),

X ∼ Expo(λ)

The PDF of X is

fX (x) =
λe−λx ; x≥ 0

0 ; x < 0

The CDF:

FX (x) =
1− e−λx ; x≥ 0

0 ; x < 0

and

E(X) = 1/λ
V(X) = 1/λ2

0 2 4
0

1

2

fX(x) = λe−λx

x

f X
(x

)

λ= 2
λ= 1
λ= 1

2

0 2 4
0

0.5

1

FX(x) = λe−λx

x

F
X

(x
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Example 42. Assume the waiting time a customer in a restaurant is exponentially distributed
with an average wait time of 5 minutes. Find the probability that the customer will have to wait
no more than 10 minutes.
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Solution: Let X be the the waiting time a customer spends in a restaurant, in minutes. Therefore,

X ∼ Expo(λ= 1/5)

Therefore,

P(X ≤ 10) = 1− e−10/5 = 0.864665

�
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Fact 4.15 — Connection between the Expo(λ) and Poi(θ = λt) distributions. If

Y ∼ Poi(λt), # of events in (0, t)
X = time of first event

then, from the picture:

P(X > t) = P(Y = 0)

= e−λt(λt)0

0!
= e−λt

1st event

time0 t .

↓

Therefore,
X ∼ Expo(λ)

Fact 4.16 — The time between arrivals. of a Poisson process, Poi(λt) are independent, identically
distributed exponential random variables having mean 1/λ.
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Fact 4.17 — Memoryless Property of the Exponential Distribution. Let t,s be positive real numbers
and X ∼ Expo(λ). Then

P (X > t+ s|X > t) = P (X > s)
= e−λs

This means that, if t represents the present time, all that matters for a exponential rv is Y =
the remaining time s until the next event, which also has the Expo(λ) distribution. Also,

E(X|X > t) = E(Y ) = E(X) = 1/λ

Proof.

P (X > t+ s|X > t) = P ({X > t+ s}∩{X > t})
P (X > t) = P (X > t+ s)

P (X > t)

= e−λ(t+s)

e−λt
= e−λs = P (X > s)

�
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STOP! The Expo(λ) and Geo(p) are the only memoryless distributions.

For any other distribution the conditional probability depends on the present time t. For
example, or the uniform distribution X ∼ U(0,1) where P (X > x) = 1−x in 0≤ x≤ 1 we have:

P (X > t+ s|X > t) = P (X > t+ s)
P (X > t) = 1− (t+ s)

1− t (4.16)

which depends on the present time t. Equation (4.16) implies that Y = {X|X > t} the remaining
time s until the next event has the U(0,1− t) distribution (why?), so:

E(X|X > t) = 1− t
2 6= E(X)
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Example 43. A battery has a lifespan that is exponentially distributed with rate parameter 1/3000
per hour.

a) Find the probability that a random battery has a lifespan of more than 2500 hours.
b) Find the probability that a random battery has a lifespan of more than 2500 hours, given

that it has already worked for 2000 hours.
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Solution: Let X be the battery lifespan in hours.

X ∼ Expo(λ= 1/3000)

a) Find the probability that a random battery has a lifespan of more than 2500 hours.

P(X ≥ 2500) = 1−FX (2500) = e−2500/3000 = 0.565

b) Find the probability that a random battery has a lifespan of more than 2500 hours, given that
it has already worked for 2000 hours.
According to Fact 4.17 all that matters for a exponential rv is the remaining time s until
the first success, which also has the Expo(λ) distribution. So,

P(X ≥ 2500|X > 2000) = P(X > 500) = 1−FX (500)
= e−500/3000 = 0.846

�
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Example 44. Below is the histogram of time between serious (magnitude at least 7.5 or over 1000
fatalities) earthquakes worldwide, recorded from 12/16/1902 to 3/4/1977:

0 500 1000 1500 2000
days0.0000

0.0005

0.0010

0.0015

0.0020

According to this data, the average time between serious earthquakes is 437 days. Assuming the
exponential distribution for the time between earthquakes:

a) if the last earthquake occurred four years ago, what is the expected time until the next
earthquake?

b) what is the probability of having 2 earthquakes in the next year?
c) if the last earthquake occurred four years ago, what is the probability of having 2 earthquakes

in the next year?
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Solution: in class �
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4.7 Gamma (Erlang) distributions are sums of exponentials
If X1,X2, . . . ,Xn are distributed as Expo(λ), independently, and

X =X1 + · · ·+Xn

then X ∼ Gamma(n,λ). In general, a random variable X is said to have a Gamma(α,β) distribution
when its pdf is

fX (x) = βα

Γ(α)x
α−1e−βx

for x > 0 and is 0 when x≤ 0. The parameter β = λ is called the rate parameter and Γ(a) is the
gamma function:

Γ(a) =
ˆ ∞

0
xa−1e−xdx.

The gamma function is a variant of the factorial function; we have Γ(n) = (n−1)! for any positive
integer n. If X ∼ Gamma(α,β) then

E(X) = α

β

V (X) = α

β2
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More on Wikipedia
Online gamma distribution Calculator

https://en.wikipedia.org/wiki/Gamma_distribution
https://homepage.divms.uiowa.edu/~mbognar/applets/gamma.html
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Example 45. In Example 44:
a) what is the probability of having 2 earthquakes in the next year? (using Gamma)
b) what is the probability that the third earthquake happens after 10 years from now?
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Solution: in class �
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4.8 The beta distribution: finite interval sample space
A random variable X is said to have a beta distributionbeta distribution with parameters α and β
if its pdf is

fX (x) = Γ(α+β)
Γ(α)Γ(β)x

α−1(1−x)β−1

for 0< x < 1 and is 0 otherwise. We then write X ∼Beta(α,β), and

E(X) = α/(α+β)
V (X) = α+β+ 1

More on Wikipedia

https://en.wikipedia.org/wiki/Beta_distribution
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4.9 The Bivariate Normal Distribution
Let X1 and X2 have the bivariate normal joint distribution. Then, the joint pdf of (X1,X2) is

fX(x) = 1
2π |V|1/2

exp
{
−1

2 (x−µ)T V−1 (x−µ)
}

where XT = (X1,X2), µT = (µ1,µ2) and V is a full rank variance-covariance matrix, i.e.,

Vij = Cov
(
Xi,Xj

)
V−1 is the inverse of V, |V| is the determinant of V.
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Fact 4.19 — Marginal distributions are normal. If (X1,X2) have a bivariate normal distribution,
then the marginal distribution of X2 is also normal with mean µ2 and variance σ2

2.

Fact 4.20 — Conditional distributions are normal. If (X1,X2) have a bivariate normal distribution,
then the conditional distribution of X2|X1 = x1 is also normal with mean and variance given by

E(X2|X1 = x1) = µ2 +ρ
σ2
σ1

(x1−µ1) . (4.17)

V(X2|X1 = x1) = (1−ρ2)σ2
2. (4.18)

Fact 4.21 If (X1,X2) have a bivariate normal distribution with ρ= 0, X1 and X2 are independent.
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Multi-variate normal distribution
The random vector XT = (X1, ...,Xn) has the multivariate normal distribution if its joint density
function is given by

f(X) = 1
(2π)n/2 |V|1/2

exp
{
−1

2 (x−µ)T V−1 (x−µ)
}

where µT = (µ1, ...,µn) and V is a full rank variance-covariance matrix. Note that for n= 2 we get
the density of the bivariate normal distribution.
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