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10 Chapter 2. Random Variables

2. Random Variables
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Often in engineering or the natural sciences, outcomes of random experiments are numbers associated
with some physical quantities. Such outcomes, called random variables, will be denoted by capital
letters, e.g.

X=“time between Tech Trolleys at the CRC stop” or
Y=“number of customers per day an Uber driver serves”,

and a particular realizations of a random variable by lowercase letters, e.g.

x= 11.4 min, or y = 6 customers.
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Random variable: the results of an experiment expressed as a number. Mathematically, a func-
tion X : S→R that maps points from the sample space to the real line is called a random variable.

There are two types of random variables:
A discrete random variable is a rv which takes a finite or countable number of values.
A continuous random variable is a rv which takes values in (an interval of) the real line.

S

X=number
of H R

HH

TH

HT

TT

0 1 2
Events are statements of the type “X ≤ x”, “X > x”, or “a < X < b”. In general, an event is
“X ∈ A” where A⊆ R.
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2.1 Probability distribution function
The function

FX (x) = P(X ≤ x), x ∈ R,

is called the probability distribution, cumulative distribution function, or CDF for short.
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The probability of any statement about the X is computable when FX (x) is known, e.g.:

• The complement rule: P(Ac) = 1−P(A) becomes P(X > a) = 1−P(X ≤ a) = 1−FX (a)
• Probability of X falling on the interval (a,b]: P(a < X ≤ b) = FX (b)−FX (a)
• Conditional probability: P(A|B) = P(A∩B)

P(B) becomes

P(a < X ≤ b | X ≤ c) = P(a < X ≤ b ∩ X ≤ c)
P(X ≤ c)

= P(a < X ≤ c)
P(X ≤ c) (assuming a≤ c≤ b)

= FX (c)−FX (a)
FX (c)

X

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

a c b
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Fact 2.1 Let FX be the cumulative distribution function of a random variable X. Then,
1. FX is a non-decreasing function.
2. FX(∞) = 1.
3. FX(−∞) = 0.
4. FX is right continuous, i.e., the function is equal to its right hand limit.
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2.2 Quantiles (aka percentiles)
The quantile xα, 0≤ α≤ 1, for a random variable X is given by:

P(X ≤ xα) = α, → xα = F−1
X

(α).

The inverse function F−1
X

(α) is called the “quantile function”.

Important quantiles are:
• median (50th-percentile): x0.5
• upper quartile (75th-percentile): x0.75
• lower quartile (25th-percentile): x0.25
• quintiles: x0.2, x0.4, x0.6, x0.8
• deciles: x0.1, x0.2, . . .
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Example 1. Derive the quantile function for the continuous CDF in the above figure, where:

FX (x) = 1
e−2x+ 1

Solution: Solving for xα in α = 1
e−2xα+1 gives

xα = 1
2 log

(
α

1−α

)

�
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2.3 Discrete Random Variables
Probability mass function (PMF). Gives the probability of a discrete random variable X having

value x is called the probability mass function of X. It is denoted as

pX (x) = P(X = x)

Observe that
FX (a) =

∑
x≤a

pX (x)

and ∑
x∈S

pX (x) = 1

This is because the events X = x are disjoint and hence form a division of the sample space S.
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Example 2. Let X be the result of a dice roll.
a) Plot the CDF and PMF of X.
b) Determine P(X > 3)
c) Determine P(2<X ≤ 5)
d) Determine P(2<X ≤ 5 | X ≤ 3)
e) Determine the median, upper quartile and lower quartile
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STOP! This is called the discrete uniform distribution in (1, 6).

a) Plot the CDF and PMF of X.
b) P(X > 3) = 1/2
c) P(2<X ≤ 5) = 1/2
d) P(2<X ≤ 5 | X ≤ 3) = 1/3
e) the median, upper quartile and lower quartile: 3, 5 and 2
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Example 3. Consider the experiment of tossing three fair coins. Let X be the random variable
that denotes the number of heads that result.

a) Plot the CDF and PMF of X.
b) Determine P(X > 2)
c) Determine P(0<X ≤ 3)
d) Determine P(0<X ≤ 3 | X ≤ 2)
e) Determine the median, upper quartile and lower quartile
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Solution: The sample space is given by

H H H
H H T
H T H
H T T
T H H
T H T
T T H
T T T

Therefore, the PMF of X is given by

pX (x) =
{

1/8 if x= 0 or x= 3
3/8 otherwise
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a) Plot the CDF and PMF of X.
b) P(X > 2) = 0.125
c) P(0<X ≤ 3) = 0.875
d) P(0<X ≤ 3 | X ≤ 2) = 0.857
e) the median, upper quartile and lower quartile=1, 2, 1

�
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Example 4. — Sum of two dice* Let X be the sum of rolling 2 dice.
a) Plot the CDF and PMF of X.
b) Determine P(X ≥ 3)
c) Determine P(5<X ≤ 8)
d) Determine P(5<X ≤ 8 | X ≤ 10)
e) Determine the median, upper quartile and lower quartile

Die 1/Die 2

2 3 4 5 6 7

3 4 5 6 7 8

4 5 6 7 8 9

5 6 7 8 9 10

6 7 8 9 10 11

7 8 9 10 11 12

Sum of 2 dice

Solution The PMF for X is given by

pX (x) =



1/36, x= 2,12
2/36, x= 3,11
3/36, x= 4,10
4/36, x= 5,9
5/36, x= 6,8
6/36, x= 7
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STOP! This is called the discrete triangular distribution

a) Plot the CDF and PMF of X.
b) P(X ≥ 3) = 0.972
c) P(5<X ≤ 8) = 0.44
d) P(5<X ≤ 8 | X ≤ 10) = .485
e) the median, upper quartile and lower quartile=7, 9, 5
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Example 5. — Sum of three dice Let X be the sum of rolling 3 dice.
a) Plot the CDF and PMF of X.
b) Determine P(X > 5)
c) Determine P(5≤X ≤ 15)
d) Determine P(5≤X ≤ 15 | X ≤ 10)
e) Determine the median, upper quartile and lower quartile=7, 9 and 5

Solution The PMF for X will be derived in future chapters. In the meantime, observe the bell
shape that arises (thanks to the Central Limit theorem).
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STOP! This PMF is very close to the normal distribution; this resemblance is a statement
of the Central Limit theorem.

a) Plot the CDF and PMF of X.
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b) P(X > 5) = 0.953
c) P(5≤X ≤ 15) = 0.935
d) P(5≤X ≤ 15 | X ≤ 10) = 0.963
e) the median, upper quartile and lower quartile=10, 13, 8
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STOP! Notice that the sample points of a discrete random variable are not necessarily
evenly spaced:
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Example 6. You have a coin with probability p of getting ‘Heads’. You flip this coin twice.
For each flip, if the result is ‘Heads’, you win $30. If the result is ‘Tails’, you lose $20.
Let X be your profit in the game.

a) What is the sample space?
b) Describe the probability mass function of X.
c) Describe the cumulative distribution function of X.

Solution:
a)

S =
{
(30 + 30),(30−20),(−20−20)

}
= {60,10,−40}

b)

P(X = x) =


p2 ; x= 60
2p(1−p) ; x= 10
(1−p)2 ; x=−40
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c)

FX(X) =



0 ; x <−40
(1−p)2 ; −40≤ x < 10
(1−p)2 + 2p(1−p) ; 10≤ x < 60
(1−p)2 + 2p(1−p) +p2 ; x≥ 60

�
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2.4 Expectation
The expectation (also known as mean) is probably the most important
measure of central tendency of a rv. The others are mode and median.

Expectation of a discrete rv Let X be a discrete rv with a set of possible
values S and PMF pX (x). The expected or mean value of X is

E(X) = µX =
∑
x∈S

x ·pX (x).

The symbol µX will be used interchangeably with E(X).

In example 3, the expectation of the number of heads is given by

E(X) = 0× 1
8 + 3× 1

8 + 1× 3
8 + 2× 3

8 = 3
2

STOP! As seen from the example, the expectation of a random
variable may not be not be on its sample space.
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Example 7. Find E(X) where X is the outcome of rolling a fair dice.

Solution: Let X be the random variable that denotes the result of a single roll of dice. The PMF
for X is given by

pX (x) = 1
6 , x= 1,2,3,4,5,6.

The expectation of X is given by

E(X) =
6∑

x=1
pX (x) ·x= 1

6 (1 + 2 + 3 + 4 + 5 + 6) = 3.5

�
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Example 8. When we roll two dice what is the expected value of their sum?

Solution Let X be the random variable denoting the sum. From example 4 above, we know that
the PMF for X is given by

pX (x) =



1/36, x= 2,12
2/36, x= 3,11
3/36, x= 4,10
4/36, x= 5,9
5/36, x= 6,8
6/36, x= 7
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The expectation of X is given by

E(X) =
12∑
x=2

pX (x) ·x

= 1
36 ×2 + 2

36 ×3 + 3
36 ×4 + 4

36 ×5 + 5
36 ×6 + 6

36 ×7 +
5
36 ×8 + 4

36 ×9 + 3
36 ×10 + 2

36 ×11 + 1
36 ×12

= 252
36 = 7
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Example 9. A class of 120 students is driven in 3 buses to a jazz concert. There are 36 students
in the first bus, 40 in the second, and 44 in the third bus. When the buses arrive, a student is
randomly chosen. Let X denote the number of students on the bus of the chosen student. Find
E(X).
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Solution:

P(X = 36) = 36
120

P(X = 40) = 40
120

P(X = 44) = 44
120

Therefore,

E(X) =
∑
x
x ·pX (x)

= 36
(

36
120

)
+ 40

(
40
120

)
+ 44

(
44
120

)
= 40.2667

�
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Example 10. — surge suppressor The owner of a small firm has just purchased a personal com-
puter, which she expects will serve her for the next two years. The owner has been told that she
"must" buy a surge suppressor to provide protection for her new hardware against possible surges
or variations in the electrical current, which have the capacity to damage the computer. The
amount of damage to the computer depends on the strength of the surge. It has been estimated
that there is a 2% chance of incurring 350 dollar damage, 4% chance of incurring 300 dollar
damage, and 11% chance of incurring 100 dollar damage from a surge within the next two years.
An inexpensive suppressor, which would provide protection for only one surge, can be purchased.

How much should the owner be willing to pay if she makes decisions on the basis of expected
value?
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Solution: Let the random variable D be the amount of damage to the computer (in dollars) caused
by a surge within the next two years. Then

E(D) = 350P(D = 350) + 300P(D = 300) + 100P(D = 100)
= 350 ·0.02 + 300 ·0.04 + 100 ·0.11 = 30

Hence the owner expects her computer to incur $30 of damage from a surge in the next two years
and so should be willing to pay $30 for a surge protector. �
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2.4.1 Expectation of a function of X
Y = g(X)

If all we want is the expected value E(Y ), there are two options:
1. compute the PMF of Y,pY (y) (chapter 5), the sample space of Y,SY and use the definition of

expectation
E(Y ) = µ

Y
=

∑
Y ∈SY

y ·pY (y).

2. use Fact 2.2 below:

Fact 2.2 — Expectation of a function of X. For any function g(X),

E
(
g(x)

)
=
∑
x∈S

g(x) ·pX (x)
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Example 11. X has the following distribution.

P(X =−1) = 0.2
P(X = 0) = 0.5
P(X = 1) = 0.3

Find E
[
X2
]
.

Solution:[1] Using
E
(
g(x)

)
=
∑
x∈S

g(x) ·pX (x)

we have:

E
(
X2
)

= (−1)2(0.2) + (02)(0.5) + (12)(0.3)
= 0.5

�
Solution:[2] Let

Y =X2
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Using option one above, we have

P(Y = 0) = P(X2 = 0)
= P(X = 0)
= 0.5

P(Y = 1) = P(X2 = 1)
= P(X =−1) + P(X = 1)
= 0.5

Therefore,

E(Y ) = E
[
X2
]

= (0)(0.5) + (1)(0.5)
= 0.5

�
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Example 12. Let the probability distribution of X be

X -2 -1 0 1 2
P (X = x) 0.25 0.1 0.2 0.2 0.25

Calculate E
(|X|).

Solution: Using fact 2.2:

E(Y ) = E(|X|) =
∑
x∈SX

|x|×P(X = x)

= 2∗0.25 + 1∗0.1 + 0∗0.2 + 1∗0.2 + 2∗0.25
= 1.3

�
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Solution: Using option one above, define Y = |X|, and we have to calculate E(Y ).

SY = {0,1,2}
P(Y = 0) = P(|X|= 0) = P(X = 0) = 0.2
P(Y = 1) = P(X = 1) + P(X =−1) = 0.2 + 0.1 = 0.3
P(Y = 2) = P(X = 2) + P(X =−2) = 0.25 + 0.25 = 0.5

Hence

E(Y ) = 0×0.2 + 1×0.3 + 2×0.5 = 1.3

�
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Example 13. Show that for any constants a,b and random variable X,

E(a+ bX) = a+ b E(X)

Solution:

E(a+ bX) =
∑
x

(a+ bx)P(X = x)

= a
∑
x

P(X = x) + b
∑
x
x P(X = x)

= a+ b E(X)

�
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2.4.2 Variance
Variance The variance of a random variable X is defined to be

V(X) = E
[(
X−E(X)

)2]
The symbol σ2

X
will be used interchangeably with V(X).

Shortcut formula for the Variance

V(X) = E
(
X2
)
−E(X)2

Proof.

E
(
(X−E(X))2

)
= E

(
X2−2XE(X) +E(X)2)

= E
(
X2
)
−2E

(
XE(X)

)
+E(X)2

= E
(
X2
)
−2E(X)2 +E(X)2

= E
(
X2
)
−E(X)2
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The standard deviation of a random variable X is

σX =
√

V(X)

The advantage is that it has the same units as X, so it is easier to interpret compared to the
variance.

Coefficient of variation The coefficient of variation of a random variable X is defined as

δX = σX
|µX |

provided µX 6= 0. The big advantage here is that the coefficient of variation is dimensionless! As
a rule of thumb, when

δX < 0.3
the random variable has moderate uncertainty.
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Fact 2.3

V(aX+ b) = a2 V(X)

Proof.

V(aX+ b) = E
[(
aX+ b−E(aX+ b)

)2]
= E

[(
aX+ b−aE(X)− b)2]

= E
[
a2 (X−E(X)

)2]
= a2 E

[(
X−E(X)

)2]
= a2 V(X)

�
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Example 14. Calculate V(X) where X represents the outcome of rolling a fair dice.

Solution:

E(X) =
6∑

x=1

1
6x

= 7
2

E
[
X2
]

=
6∑

x=1

1
6x

2

= 91
6

Therefore,

V(X) = E
[
X2
]
−E(X)2

= 91
6 −

49
4

= 35
12
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Notice that the coefficient of variation of a dice is about 0.5:

δX = σX
|µX |

=

√
35/12
7/2 ≈ 0.49

�
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Example 15. * Recall example 6. You have a coin with probability p of getting ‘Heads’. You flip
this coin twice. For each flip, if the result is ‘Heads’, you win $30. If the result is ‘Tails’, you lose
$20.
Let X be your profit in the game.

a) What is the expected value of X?
b) What is the value of p upto which you would agree to participate in the game?
c) What is V(X)?
d) What is σX?

Solution:
a)

E[X] = (−40)(1−p)2 + (10)2p(1−p) + (60)p2

= 100p−40

b) 100p−40> 0→ p > 2/5
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c) Let’s use V(X) = E
[
X2
]
−E(X)2:

E
[
X2
]

= (−40)2(1−p)2 + (10)22p(1−p) + (60)2p2

= 5000p2−3000p+ 1600
E(X)2 = (100p−40)2

= 10000p2−8000p+ 1600

Therefore,

V(X) = E
[
X2
]
−E(X)2

= 5000p(1−p)

d)

σX =
√

V(X)

=
√

5000p(1−p)

�
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Example 16. Consider three random variables X,Y,Z measured in the same units. Their
probability mass distribution is as follows.

P(X = x) =
{

1/2, x=−2
1/2, x= 2

P(Y = y) =


0.001, y =−10
0.998, y = 0
0.001, y = 10

P(Z = z) =


1/3, z =−10
1/3, z = 0
1/3, z = 10

Which of the above random variables is more “spread out”?
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Solution: It is easy to see that E(X) = E(Y ) = E(Z) = 0.

V(X) = E
(
X2
)

= 0.5 · (−2)2 + 0.5 · (2)2

= 4
V(Y ) = E

(
Y 2
)

= 0.001 · (−10)2 + 0.998 ·02 + 0.001 · (10)2

= 0.2
V(Z) = E

(
Z2
)

= (1/3) · (−5)2 + (1/3) ·02 + (1/3) · (5)2

= 16.67

Thus Z is the most spread out and Y is the most concentrated. �
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2.5 Jointly Distributed Discrete Random Variables
There are many practical situations where we need to deal with more than two measurement
simultaneously. The Joint Probability Distribution of (X,Y ) describes the joint random behavior of
X and Y .
For instance we might be interested in the relationship between heights and weights of a population.
Let (Xi,Yi) denote the (weight, height) of person i, then (Xi,Yi) are related since we can expect that
if Xi is large/small then the associated Yi tends to be large/small. Thus Xi and Yi are correlated
and we should describe the behavior of (Xi,Yi) jointly (together).
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→ data source
Histogram of the weight/height data:

http://ww2.amstat.org/publications/jse/v11n2/datasets.heinz.html
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The data for the histogram is:

W\H 147 - 157 157 - 167 167 - 177 177 - 187 187 - 197 197 - 207
42 - 52 3 18 6 0 0 0
52 - 62 0 21 82 21 0 0
62 - 72 0 7 57 50 6 0
72 - 82 0 2 23 61 28 1
82 - 92 0 0 9 38 35 5
92 - 102 0 0 0 10 10 5
102 - 112 0 0 1 2 2 3
112 - 122 0 0 0 1 0 0

Dividing this table entries by the sum (507 individuals) would give the joint PMF.
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In general, a joint distribution looks like this:
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2.5.1 Chapter 1 results in PMF notation
Recall from chapter 1 For two events A and B in sample space S:

P(A|B) = P(A∩B)
P(B) (conditional probability)

P(A∩B) = P(A|B)P(B) (multiplication rule)
P(A∩B) = P(A)P(B) (independence)

P(B) =
n∑
i=1

P(B∩Ai) (total probability, where S is partitioned into A1, . . . ,An)

=
n∑
i=1

P(B|Ai)P(Ai)

These definitions we developed for events in chapter 1 extend to random variables by defining events
A and B and their intersection as

A= (X = x) and B = (Y = y) and A∩B = (X = x,Y = y)
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And now we express the results from chapter 1 in PMF notation, that is, in terms of probability
mass functions. We start with P(A∩B), which we now call the joint PMF:

Joint PMF For two random variables X and Y the joint PMF is

pX,Y (x,y) = P(X = x,Y = y)

Note:∑
X

∑
Y

pX,Y (x,y) = 1

The total probability rule we now call marginal PMF:
Marginal PMF The PMF of a single random variable is called marginal PMF:

pX (x) =
∑
Y

pX,Y (x,y) and pY (y) =
∑
X

pX,Y (x,y)
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The conditional probability rule we now call conditional PMF:
Conditional PMF Let X and Y be two discrete random variables. Then the conditional

probability mass function (conditional pmf) of Y given X = x is defined as,

p
Y |X=x(y) = P (Y = y|X = x) = P (Y = y,X = x)

P (X = x) =
pX,Y (x,y)
pX (x)

for y ∈ SY and x ∈ SX . Please note that in the term p
Y |X=x(y) we are thinking as if x is fixed

and y is the variable, but obviously both can vary.

The conditional pmf of X given Y = y for some y ∈ SY is similarly defined as,

p
X|Y=y(x) = P (X = x|Y = y) = P (X = x,Y = y)

P (Y = y) =
pX,Y (x,y)
pY (y)

STOP! The PMF version of the Multiplication Rule:
pX,Y (x,y) = pY (y)p

X|Y (x)
= pX (x)p

Y |X (y)
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can be combined with the definition of marginal PMF:

pX (x) =
∑

Y

pY (y)p
X|Y (x)

The condition for independence P(X = x,Y = y) = P(X = x) ·P(Y = y) in PMF notation becomes
Independence of Two Random Variables. Random variables X and Y are independent iif:

pX,Y (x,y) = pX (x)pY (y)

for all (x,y).

Alternative we could use p
X|Y (x) = pX (x) or p

Y |X (y) = pY (y) to check for independence, but the
above definition is the most common.
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Calculating probabilities For any two random variables X and Y having joint PMF X:

P
(
(X,Y ) ∈ A)=

∑
(x,y)∈A

pX,Y (x,y)

Finally, let’s define the joint CDF although for some reason it is rarely used in this chapter.
Joint Cumulative Probability Distribution Function For any two random variables X and Y , the

joint cumulative probability distribution function of X and Y is defined to be

FX,Y (a,b) = P(X ≤ a,Y ≤ b)
=

∑
x≤a,y≤b

pX,Y (x,y)

where a ∈ R and b ∈ R.
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Example 17. 3 balls are randomly selected from an urn containing 3 red, 4 white, and 5 blue
balls.
Let X be the number of red balls chosen.
Let Y be the number of white balls chosen.
Find the joint probability mass function of X and Y .

Solution:

P(X = x,Y = y) =

(3
x

)(4
y

)( 5
3−x−y

)
(12

3
)

Therefore,

X\Y 0 1 2 3 TOT =pX (x)
0 10/220 40/220 30/220 4/220 84/220
1 30/220 60/220 18/220 0 108/220
2 15/220 12/220 0 0 37/220
3 1/220 0 0 0 1/220

TOT =pY (y) 56/220 112/220 48/220 4/220 1

�
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Example 18. Given the joint distribution of (X,Y ):

X
pX,Y (x,y) 0 1 2

0 3/28 9/28 3/28
Y 1 3/14 3/14 0

2 1/28 0 0/28

are X and Y statistically independent?
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Solution: Recall that random variables X and Y are independent iif:

pX,Y (x,y) = pX (x)pY (y)

for all (x,y), and that the marginal distributions are defined as

pX (x) =
∑
Y

pX,Y (x,y) and pY (y) =
∑
X

pX,Y (x,y)

which correspond to the row totals and column totals:

X
pX,Y (x,y) 0 1 2 pY (y)

0 3/28 9/28 3/28 15/28
Y 1 3/14 3/14 0 3/7

2 1/28 0 0 1/28
pX (x) 5/14 15/28 3/28 1

Since pX,Y (0,0) 6= pX (0) ·pY (0), X and Y are not independent. �
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Example 19. In a class there are four freshman boys, six freshman girls, and six sophomore boys.
How many sophomore girls must be present if gender and class are to be independent when a
student is selected at random?
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Solution: In class. �
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Example 20. * The joint distribution of X and Y is given in the following table

pXY (x,y) X=0 X=1 X=3 TOT
Y=-1 0.11 0.03 0 0.14
Y=2.5 0.03 0.09 0.16 0.28
Y=3 0.15 0.15 0.06 0.36
Y=4.7 0.04 0.16 0.02 0.22
TOT 0.33 0.43 0.24 1

Find a) P (Y −X ≤ 2), b) P (2≤ Y ≤ 4|X = 1).
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Solution: a) The best way to do this is to calculate the values of the required function, Y −X in
this case, and highlight the cells that are favorable to our condition, being less than or equal to two
in this case:

Y-X X=0 X=1 X=3
Y=-1 -1 -2 -4
Y=2.5 2.5 1.5 -0.5
Y=3 3 2 0
Y=4.7 4.7 3.7 1.7

Then, we add up all the joint probabilities corresponding to these highlighted cells:

pXY (x,y) X=0 X=1 X=3
Y=-1 0.11 0.03 0
Y=2.5 0.03 0.09 0.16
Y=3 0.15 0.15 0.06
Y=4.7 0.04 0.16 0.02

which gives 0.62.
b)The conditional distribution of Y |X = 1 is :
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pY |X=1(y) X=1
Y=-1 0.03/0.43
Y=2.5 0.09/0.43
Y=3 0.15/0.43
Y=4.7 0.16/0.43
TOT 1

and the desired probability is 0.09/0.43+0.15/0.43=0.558.
�
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Example 21. The joint distribution of X and Y is given in the following table

pXY (x,y) X=-1 X=-2 X=2 X=3 TOT
Y=-3 0.14 0.14 0.01 0.05 0.34
Y=-1 0.15 0.06 0.06 0.04 0.31
Y=1 0.03 0.1 0.11 0.11 0.35
TOT 0.32 0.3 0.18 0.2 1

Find P (Y +X ≤ 0), P (−2≤X ≤ 2|Y =−1).
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Solution: a)0.68 b)0.387 �
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Example 22. Roll a balanced dice twice. Define random variables:
• X = number of 4’s
• Y = number of 5’s

(a) Find the joint distribution of X and Y , pX,Y (x,y).
(b) Find P

(
(X,Y ) ∈ A) where A= {2x+y < 3}
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Solution:
Possible values of X and Y : x= 0,1,2, y = 0,1,2, x+y ≤ 2.
Sample space

Roll 2
1 2 3 4 5 6

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
Roll 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

1 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

(36 equally likely sample points)

y

pX,Y (x,y) 0 1 2
0 16/36 8/36 1/36

x 1 8/36 2/36 0
2 1/36 0 0
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(Check if
∑

X

∑
Y

pX,Y (x,y) = 1?)

(b) Find P
(
(X,Y ) ∈ A) where A= {2x+y < 3}

P
(
(X,Y ) ∈ A)= pX,Y (0,0) +pX,Y (0,1) +pX,Y (0,2) +pX,Y (1,0) = 33/36 �
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Example 23. Toss a balanced coin 3 times. Define random variables
• X = number of heads
• Y = (number of heads) − (number of tails)

Find the joint distribution of X and Y .
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Solution:
Possible values of X and Y :

x = 0,1,2,3
y = −3,−1,1,3

2x−y = 3 (why?)

Sample space

S = {HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}

(8 equally likely sample points)

y
pX,Y (x,y) −3 −1 1 3

0 1/8 0 0 0
1 0 3/8 0 0

x 2 0 0 3/8 0
3 0 0 0 1/8

(Check if
∑

X

∑
Y

pX,Y (x,y) = 1—YES!) �
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Example 24. — The Titanic data :
Passenger Status Survivors Fatalities TOTAL
First Class 203 122 325
Second Class 118 167 285
Third Class 178 528 706
Crew 212 673 885
Total 711 1490 2201

There are two random variables in play here,

X = 0 if passenger survived
= 1 if passenger diced
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and

Y = 1 if passenger was in first class
= 2 if passenger was in second class
= 3 if passenger was in third class
= 4 if passenger was a crew member

So we approximate the joint PMF of X and Y as,

X=0 X=1
Y=1 0.09 0.06
Y=2 0.05 0.08
Y=3 0.08 0.24
Y=4 0.10 0.30

For example pX,Y (0,1) = 203
2201 = 0.09.

Find P (X+Y ≤ 2).
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Solution:

P (X+Y ≤ 2) = P (X = 0,Y = 1) +P (X = 0,Y = 2) +P (X = 1,Y = 1)
= 0.09 + 0.05 + 0.06
= 0.2

�
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Example 25. Let’s see how we can apply conditional probabilities in the titanic example,

X=0 X=1
Y=1 0.09 0.06
Y=2 0.05 0.08
Y=3 0.08 0.24
Y=4 0.10 0.30

Determine the probability of being a survivor given the class.
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Solution:

P (Survivor|First Class) = pX|Y=1(0) =
pX,Y (0,1)
pY (1) = 0.09

0.09 + 0.06 = 0.6

P (Survivor|Second Class) = pX|Y=2(0) =
pX,Y (0,2)
pY (2) = 0.05

0.05 + 0.08 = 0.3846

P (Survivor|Third Class) = pX|Y=3(0) =
pX,Y (0,3)
pY (3) = 0.08

0.08 + 0.24 = 0.25

P (Survivor|Crew) = pX|Y=4(0) =
pX,Y (0,4)
pY (4) = 0.1

0.1 + 0.3 = 0.25

So we see that probability of survival across passenger class is decreasing, although we should be
careful while making remarks like this and consider other factors present. �
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2.5.2 Expectation with two random variables
Expected value rule for multiple random variables

E
(
g(X,Y )

)
=
∑
X

∑
Y

g(x,y)pX,Y (x,y)

Conditional Expectation

E
(
g(X,Y )|Y = y

)
=
∑
X

g(x,y)p
X|Y (x)
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Fact 2.4 — Linearity of Expectation. For any finite collection of random variables X1,X2, . . . ,Xn,

E
 n∑
i=1

Xi

=
n∑
i=1

E(Xi)

Proof. We will prove the statement for two random variables X and Y . The general claim can be
proven using induction.
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E(X+Y ) =
∑
x

∑
y

(x+y)pX,Y (x,y)

=
∑
x

∑
y

(xpX,Y (x,y) +ypX,Y (x,y))

=
∑
x

∑
y
xpX,Y (x,y) +

∑
x

∑
y
ypX,Y (x,y)

=
∑
x
x
∑
y
pX,Y (x,y) +

∑
y
y
∑
x
pX,Y (x,y)

=
∑
x
xpX (x) +

∑
y
ypY (y)

= E(X) +E(Y )

�
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Example 26. Using linearity of expectation calculate the expected value of the sum of the numbers
obtained when two dice are rolled.
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Solution: Let X1 and X2 denote the random variables that denote the result when dice 1 and dice
2 are rolled respectively. We want to calculate E(X1 +X2). By linearity of expectation

E(X1 +X2) = E(X1) +E(X2)
= 3.5 + 3.5
= 7

�
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Example 27. — Indicator (aka Bernouilli) Random Variables. Let X be the random variable such
that

X =
{

1 if event A occurs (with probability p= P(A))
0 otherwise

show that

E(X) = p

V(X) = p(1−p)

Solution:

E(X) = 1×p+ 0× (1−p) = p

E
(
X2
)

= 12×p+ 02× (1−p) = p

V(X) = E
(
X2
)
−E(X)2 = p−p2 = p(1−p)

�
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Example 28. — The hat check problem. Suppose that n people leave their hats at the hat check.
If the hats are randomly returned what is the expected number of people that get their own hat
back?
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Solution: Let X be the random variable that denotes the number of people who get their own hat
back. Let Xi,1≤ i≤ n, be the random variable such that

Xi =
{

1 if the i-th person gets his/her own hat back (with probability p= 1/n)
0 otherwise

Thus,

E(Xi) = 1× 1
n

+ 0× (1− 1
n

) = 1
n

Now clearly,

X =
n∑
i=1

Xi =X1 +X2 +X3 + . . .+Xn

By linearity of expectation we get

E(X) =
n∑
i=1

E(Xi) =
n∑
i=1

1
n

= n× 1
n

= 1

So on average, only one person will get his/her hat back! �
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Example 29. Suppose we throw n balls into n bins with the probability of a ball landing in each
of the n bins being equal. What is the expected number of empty bins?
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Solution: Let X be the random variable denoting the number of empty bins. Let Xi be a random
variable that is 1 if the i-th bin is empty and is 0 otherwise:

Xi =
{

1 if the i-th bin is empty, with probability p= (1−1/n)n
0 otherwise

Clearly

X =
n∑
i=1

Xi

By linearity of expectation, we have

E(X) =
n∑
i=1

E(Xi)

=
n∑
i=1

P(Xi = 1)

=
n∑
i=1

(
1− 1

n

)n

= n

(
1− 1

n

)n
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As n→∞, (1− 1
n)n→ 1

e . Hence, for large enough values of n we have

E(X)≈ n/e

This means that on average about one third of the bins will be empty. �
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Fact 2.5 If X and Y are independent, then, for any function g and h,

E
[
g(X)h(Y )

]
= E

[
g(X)

]
E
[
h(Y )

]
Proof.

E
(
g(X)h(Y )

)
=

∑
x

∑
y
g(x)h(y)pX,Y (x,y)

=
∑
x

∑
y
g(x)h(y)pX (x)pY (y)

=
∑
x
g(x)pX (x)

∑
y
h(y)pY (y)

= E
[
g(X)

]
E
[
h(Y )

]
Fact 2.6 — E(XY ) = E(X)E(Y ) when X,Y are independent. This follows from the previous result
with

g(X) =X, h(Y ) = Y
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2.6 Covariance
Covariance Let X and Y be random variables. Then

Cov(X,Y ) = E
[(
X−E(X)

)(
Y −E(Y )

)]
is defined to be the covariance of X and Y .

Fact 2.7 — Shortcut formula for covariance.

Cov(X,Y ) = E(XY )−E(X)E(Y )

Proof.

Cov(X,Y ) = E
[(
X−E(X)

)(
Y −E(Y )

)]
= E

[
XY −E(X)Y −XE(Y ) +E(X)E(Y )

]
= E(XY )−E(X)E(Y )−E(X)E(Y ) +E(X)E(Y )
= E(XY )−E(X)E(Y )

�
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Fact 2.8 If X and Y are independent, then

Cov(X,Y ) = 0

However, the converse is not true.

Proof.

Cov(X,Y ) = E(XY )−E(X)E(Y )

As X and Y are independent E(XY ) = E(X)E(Y ), so

Cov(X,Y ) = E(X)E(Y )−E(X)E(Y )
= 0

�

Uncorrelated random variables X and Y are said to uncorrelated if and only if

Cov(X,Y ) = 0
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(Pearson’s) correlation coefficient

ρX,Y = Cov(X,Y )
σXσY

It can be shown that
−1≤ ρX,Y ≤+1

ρ is unitless, therefore it can be used to compare across different ramp variables.
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2.6.1 Interpretation of Covariance and Correlation
Let the following approximation of Cov(X,Y ) based on a sample {(x1,y1),(x2,y2), . . .(xn,yn)}:

Cov(X,Y ) = E
[(
X−µX

)(
Y −µY

)]
=
∑
x,y

(x−µX )(y−µY )pX,Y (x,y)

≈ 1
n

n∑
i=1

(xi−µX )(yi−µY )︸ ︷︷ ︸
ci

The following figures illustrate scatter plots for typical values for the correlation coefficient.
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These figures shows that
1. even if ρ≈ 0, that does not mean there is no relationship between X and Y , it just means

that there is no linear relationship.
2. even if ρ > 0.9 the relationship may be highly nonlinear
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STOP! Correlation does not necessarily mean causation. For example:
1. The yield of oranges and apples are highly correlated in the Monterey Valley. Therefore,

to produce more apples one should produce more oranges?
2. There is a high correlation between the number of police officers and the number of

crimes on a given city. Therefore, to reduce crime rates one should reduce the police
force?

3. → More examples from Wikipedia...
The use of a controlled experiment is the most effective way of establishing causality
between variables. In a controlled study, the sample or population is split in two, with both
groups being comparable in almost every way. The two groups then receive different treatments,
and the outcomes of each group are assessed.

https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation#Examples_of_illogically_inferring_causation_from_correlation
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2.6.2 Covariance of linear combinations
In this section we consider multiple random variables

X = (X1,X2, . . .Xn)T

which we call the random vector X, with means, variances and covariances (and correlations) given:

E(Xi) = µi

V(Xi) = σ2
i

Cov(Xi,Xj) = σij

= ρijσiσj

Covariance matrix The covariance matrix of the random vector X with vector mean µ = {µ1,µ2, . . .µn}
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is the n×n matrix whose (i, j)th element is Cov(Xi,Xj):

ΣX = E
(
(X−µ)(X−µ)T

)
=


σ2

1 σ12 σ13 · · ·
σ21 σ2

2 σ23 · · ·
σ31 σ32 σ2

3 · · ·
... ... ... . . .


Its two main properties are:

1. it is symmetric since
Cov(Xi,Xj) = Cov(Xj ,Xi)

2. its diagonal elements give the variance, since

Cov(Xi,Xi) = σ2
i
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Fact 2.9 — Covariance of linear combinations. Let the following linear combinations:

U =
n∑
i=1

aiXi = aTX

V =
n∑
j=1

bjXj = bTX

with a = (a1, . . . ,an)T and b = (b1, . . . , bn)T . Then,

Cov(U,V ) =
n∑
i=1

n∑
j=1

aibjσij

= aTΣXb

Proof. From the properties of the expectation we have that:

E(U) =
n∑
i=1

aiµi = aTµ, E(V ) =
n∑
j=1

bjµj = bTµ
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therefore, by definition, the covariance of U and V is,

Cov(U,V ) = E
[(
U −E(U)

)(
V −E(V )

)]
= E

(
(aTX−aTµ)(bTX−bTµ)

)
= E

(
aT(X−µ)bT(X−µ)

)
= E

(
aT(X−µ)(X−µ)Tb

)
= aTE

(
X−µ)(X−µ)T

)
b

= aTΣXb
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Without matrix notation, the proof goes like this:

Cov(U,V ) = E
[(
U −E(U)

)(
V −E(V )

)]

= E


 n∑
i=1

aiXi−
n∑
i=1

aiµi


 m∑
j=1

biXj−
m∑
j=1

bjµj




= E

 n∑
i=1

ai (Xi−µi)
m∑
j=1

bj
(
Xj−µj

)
= E

 n∑
i=1

m∑
j=1

aibj (Xi−µi)
(
Xj−µj

)
=

n∑
i=1

m∑
j=1

aibj Cov(Xi,Xj)

�
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Important corollaries of theorem 2.9:
Variance of linear combination

V
(
aTX

)
= aTΣXa

or in standard notation:

V
 n∑
i=1

aiXi

=
n∑
i=1

a2
iσ

2
i + 2

n∑
i=1

n∑
j=i+1

aiajσi,j︸ ︷︷ ︸
0 if Xi’s are independent

(2.1)

This formula illustrates the concept of propagation of errors, where the errors (variances and
covariances) in the Xi’s produce errors in the function U =

n∑
i=1

aiXi.
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Proof. Let U =
n∑
i=1

aiXi

V(U) = Cov(U,U) (by definition)

=
n∑
i=1

n∑
j=1

aiaj Cov
(
Xi,Xj

)
(theorem 2.9)

=
n∑
i=1

a2
i V(Xi) +

n∑
i=1

n∑
j 6=i

aiaj Cov(Xi,Xj) (i= j terms first)

=
n∑
i=1

a2
i V(Xi) + 2

n∑
i=1

n∑
j=i+1

aiaj Cov(Xi,Xj) (symmetry of ΣX)

�
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Important results for two random variables:

V(X+Y ) = V(X) + V(Y ) + 2Cov(X,Y )
V(X−Y ) = V(X) + V(Y )−2Cov(X,Y )

Cov(aX+ b,cY +d) = ac Cov(X,Y )
ρ
aX+b,cY+d = ρX,Y
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Example 30. The random variables X and Y have joint probability distribution specified by the
following table:

y=1 y=2 y=3
x=1 0.30 0.05 0.00
x=2 0.05 0.20 0.05
x=3 0.00 0.05 0.30

(a) Find the expectation of XY .
(b) Find the covariance Cov(X,Y ) between X and Y .
(c) What is the correlation between X and Y ?
(d) Suppose the random variables X and Y above are connected to random variables U and V
by the relations

X = 2U + 5
Y = 4V + 5

What is the covariance Cov(U,V )?
(e) What is the correlation between U and V ?
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Solution: Part a) The mass function of XY is tabulated below:

xy 1 2 3 4 6 9
P (XY = xy) 0.3 0.1 0.0 0.2 0.1 0.3

Therefore

E (XY ) = 0.3 + 0.2 + 0 + 0.8 + 0.6 + 2.7 = 4.6

Part b)
We require E (X) ,E (Y ) ,V (X) , and V (Y ); these are as follows
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E (X) = 0.35 + 0.6 + 1.05
= 2.0
= E (Y ) ,

E
(
X2
)

= 0.35 + 22×0.3 + 32×0.35
= 4.7
= E

(
Y 2
)
,

Var(X) = 4.7−22

= 0.7
= Var(Y ) .

Hence
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Cov (X,Y ) = E (XY )−E (X)E (Y )
= 4.6−4
= 0.6

Part c) For the correlation we require

ρ(X,Y ) = Cov (X,Y )√
Var(X)Var(Y )

= 0.6√
0.72

= 6
7

Part d)

U =X/2−5/2
V = Y/4−5/4
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Since Cov(aX+ b,cY +d) = ac Cov(X,Y ) and so Cov(U,V ) = Cov(X,Y )/(2 ·4) = 0.6/(2 ·4).
Part e) The correlation between U and V can be written

ρU,V = Cov(U,V )√
V(U)

√
V(V )

= Cov(X,Y )/(2 ·4)√
(V(X)/22)(V(V )/42)

= ρX,Y

= 6
7

�
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Example 31. — 2 Dice There is a blue and yellow dice. Compute the correlation between X, the
number on the blue dice, and S, the total of the two dice.
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Solution:
Write

S =X+Y

where Y is the number on the yellow dice. Here n= 2, a1 = 1, a2 = 0, and b1 = 1, b2 = 1. Therefore,

Cov(X,S) = Cov(X,X+Y )
= Cov(X,X) + Cov(X,Y )
= V(X) + 0

Also,

V(S) = V(X+Y ) = V(X) + V(Y )

But V(Y ) = V(X). So the correlation between X and S is

ρX,S = V(X)√
V(X)

√
2V(X)

= 0.707

�
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Example 32. Find the covariance matrix of {U,V } where

U =X1 +X2

and
V =X1−X2

Solution: Recall from Fact 2.9:

Cov(U,V ) = aTΣXb

=
n∑
i=1

n∑
j=1

aibjσij

Here n= 2, a1 = 1, a2 = 1 and b1 = 1, b2 =−1. Therefore,

Cov(U,V ) = Cov(X1,X1)−Cov(X1,X2) + Cov(X2,X1) + Cov(X2,X2)
= Cov(X1,X1)−Cov(X2,X2)
= σ2

1 +σ2
2
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Also,

V(U) = σ2
1 +σ2

2 + 2σ12

V(V ) = σ2
1 +σ2

2−2σ12

and so the covariance matrix is:(
σ2

1 +σ2
2 + 2σ12 σ2

1 +σ2
2

σ2
1 +σ2

2 σ2
1 +σ2

2−2σ12

)

�
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Example 33. *
The joint PMF of precipitation, X(in.) and runoff, Y (cfs) (discretized here for simplicity) due
to storms at a given location is as follows:

X=1 X=2 X=3
Y=10 0.0 0.25 0.10
Y=20 0.10 0.0 0.10
Y=30 0.05 0.15 0.25

(a) What is the probability that the next storm will bring a precipitation of 2 in. and a runoff of
more than 20 cfs?
(b) After a storm, the rain gauge indicates a precipitation of 2 in. What is the probability that
the runoff in this storm in 20 cfs or more?
(c) Are X and Y statistically independent? Substantiate your answer.
(d) Determine and plot the marginal PMF of runoff.
(e) Determine and plot the PMF of runoff for a storm whose participation is 2 in.
(f) Determine the correlation coefficient between precipitation and runoff.

Solution: Answer: (a) 0.15 (b) 0.375 (c) Not independent (f) 0.1103
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(a)

P (X = 2,Y > 20) = P (X = 2,Y = 30)
= 0.15

(b)

P (Y ≥ 20|X = 2) = P (X = 2,Y = 20) +P (X = 2,Y = 30)
P (X = 2)

= 0 + 0.15
0.25 + 0 + 0.15

= 0.375

(c)

P (X = 1) = 0 + 0.1 + 0.05
= 0.15

P (Y = 10) = 0 + 0.25 + 0.1
= 0.35
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P (X = 1,Y = 10) = 0
6= P (X = 1) ·P (Y = 10)

So they are not independent.
(d)

P (Y = 10) = 0 + 0.25 + 0.1
= 0.35

P (Y = 20) = 0.1 + 0 + 0.1
= 0.2

P (Y = 30) = 0.05 + 0.15 + 0.25
= 0.45

(e)

P (Y = 10|X = 2) = 0.25
0.25 + 0 + 0.15

= 0.625
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P (Y = 20|X = 2) = 0
0.25 + 0 + 0.15

= 0

P (Y = 30|X = 2) = 0.15
0.25 + 0 + 0.15

= 0.375



2.6 Covariance 129

(f)
E(X) = 0.15×1 + 0.4×2 + 0.45×3

= 2.3
E(Y ) = 0.35×10 + 0.2×20 + 0.45×30

= 21
E(X2) = 0.15×12 + 0.4×22 + 0.45×32

= 5.8
E(Y 2) = 0.35×102 + 0.2×202 + 0.45×302

= 520
E(XY ) = 0×10 + 0.25×20 + 0.10×30 + 0.1×20 + 0×40 + 0.1×60 + 0.05×30 + 0.15×60 + 0.25×90

= 49

ρ = Cov(X,Y )
σXσY

= E(XY )−E(X)E(Y )√
E(X2)−E(X)2

√
E(Y 2)−E(Y )2

= 49−2.3×21√
5.8−2.32

√
520−212

= 0.1103
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�
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Example 34. — speeding tickets** A study investigates a group of people who have received
speeding tickets in the past year. The joint PMF is summarized in the following table. Let X be
the number of tickets received by a person in the past year and Y be the age of that person.

X=1 X=2
Y=30 c c + 1/8
Y=40 c c - 1/8

(a) Determine the value of c. (5 points)
(b) Determine the marginal PMF of X, and the conditional PMF of X. (10 points)
(c) If someone is 30 years old, find the probability that this person gets exact one ticket. (5
points)
(d) Are X and Y statistically independent? Substantiate your answer. (5 points)
(e) Determine the correlation coefficient between X and Y . (10 points)

Solution: (a)

1 = c+ (c+ 1
8) + c+ (c− 1

8)
c = 0.25
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(b) Marginal:

pX=1 = c+ c

= 0.5
pX=2 = (c+ 1

8) + (c− 1
8)

= 0.5
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Conditional:
pX=1|Y=30 = c

c+ (c+ 1
8)

= 0.4

pX=2|Y=30 =
c+ 1

8
c+ (c+ 1

8)
= 0.6

pX=1|Y=40 = c

c+ (c− 1
8)

= 0.67

pX=2|Y=40 =
c− 1

8)
c+ (c− 1

8)
= 0.33

(c)

pX=1|Y=30 = c

c+ (c+ 1
8)

= 0.4
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(d) Not independent. Because pX=1|Y=30 6= pX=1

(e)

E(X) = 1.5

E(Y ) = 270
8

E(X2) = 2.5
E(Y 2) = 1162.5

E(XY ) = c×1×30 + c×1×40 + (c+ 1
8)×2×30 + (c− 1

8)×2×40
= 50

ρ = Cov(X,Y )
σXσY

= E(XY )−E(X)E(Y )√
E(X2)−E2(X)

√
E(Y 2)−E2(Y )

= −0.258

�
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Example 35. * Given the joint distribution of (X,Y ):

X
pX,Y (x,y) -1 0 1 Σ

-1 1/16 3/16 1/16 5/16
Y 0 3/16 0 3/16 3/8

1 1/16 3/16 1/16 5/16
Σ 5/16 3/8 5/16 1

Calculate the covariance of X and Y . Are they statistically independent?
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Solution: The covariance is zero but since pX,Y (0,0) 6= pX (0) ·pY (0), X and Y are not independent.
�
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Example 36. — Tornadoes, take 2 100 structures are located in a region where tornado wind
force must be considered in its design. Suppose that from the records of tornadoes for the past
200 years, it is estimated that (i) during any given year the probability of having 0, 1 and 2
tornadoes is 0.5, 0.3 and 0.2, respectively, (ii) the number of tornadoes in different years are
independent, and (iii) if a tornado occurs, a structure will be damaged with probability p=5%.

a) if two tornadoes occurred last year, how many structures do you expect to have been
damaged?

b) what is the probability the a structure will be damaged in the next five years?
c) calculate the mean and variance of the number of structures damaged in the next five years?

d) If you’re a contractor in charge of rehabilitating the structures in the region after a tornado
damage, compute the mean and variance of your yearly income, U , if you charge c dollars
per rehabilitation work.

e) calculate the coefficient of variation of your yearly income, and comment.
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Solution: Let
X = number of tornadoes on a given year, SX = {0,1,2} tornadoes.
Yi number of times structure i= 1,2, . . .100 is damaged due to tornadoes on a given year.
The event (Yi > 0|X = x) is similar to obtaining at least one Head out of x tosses of a coin with
P(Head) = p, therefore:

P(Yi > 0|X = x) = 1− (1−p)x

a) If two tornadoes occurred last year, how many structures do you expect to have been damaged?

Let Z = number of structures damaged last year. Let

Zi =
{

1 if structure i was damaged last years
0 otherwise

We are interested in the expected value of Z =∑100
i=1Zi. By linearity of expectation we get

E(Z) =
100∑
i=1

E(Zi) =
100∑
i=1

P(Zi = 1) =
100∑
i=1

P(Yi > 0|X=2) = 100(1− (1−p)2) = 9.75

→ 10 structure.



2.6 Covariance 139

b) what is the probability the a structure will be damaged in the next five years?

Since the number of tornadoes are independent from year to year, we can focus on a single
year, calculate the probability of D = damage in one year for one structure, and then “
flip a coin” five times with

P(D) = P(Yi > 0) = 1−P(Yi = 0)

Since we don’t know the number of tornadoes that will occur, we use the total prob. rule:

P(Yi = 0) =
2∑

x=0
P(Y = 0|X = x)P(X = x)

=
2∑

x=0
(1−p)xP(X = x)

= (1−p)0P(X = 0) + (1−p)1P(X = 1) + (1−p)2P(X = 2)
=
(
(1)(0.5)

)
+
(
(0.95)(0.3)

)
+
(
(0.952)(0.2)

)
= 0.9655

then P(D) = 1−0.9655 = 0.0345 for one year. The desired probability is 1− (1−P(D))5 = 0.16.
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c) calculate the mean and variance of the number of structures damaged in the next five years?

Let

Zi =
{

1 if structure i is damaged in five years
0 otherwise

Thus, P(Zi = 1) = 0.16 and E(Zi) = 0.16, V(Zi) = 0.16(1−0.16) = 0.13. We are interested in

Z =
100∑
i=1

Zi

By linearity of expectation we get

E(Z) =
100∑
i=1

E(Zi) =
100∑
i=1

0.16 = 16

and by result (2.1) for the variance of a sum we have,

V(Z) =
100∑
i=1

V(Zi) =
100∑
i=1

0.13 = 13
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d) If you’re a contractor in charge of rehabilitating the structures in the region after a tornado
damage, compute the mean and variance of your yearly income, U , if you charge c dollars per
rehabilitation work.

Let Yi be the number of times structure i is damaged due to tornadoes on a given year.
We are interested in U =∑100

i=1 cYi. By linearity of expectation we get

E(U) =
100∑
i=1

cE(Yi) = 100cE(Yi)

and by result (2.1) for the variance of a sum we have,

V(U) =
100∑
i=1

c2V(Yi) = 100c2V(Yi)

To compute the mean and variance of Yi we need its PMF. From the problem statement we
have pX , and we can determine p

Yi|X
as we did on part a), and then we use the multiplication

rule,

pX,Yi (x,y) = pX (x)p
Yi|X

(y).

marginal distribution of X :
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x 0 1 2
pX (x) 0.5 0.3 0.2

conditional distribution of Yi|X : P(Yi = y|X = x) =
(
x
y

)
py(1−p)x−y :

y 0 1 2 Σ
p
Yi|X=0(y) 1 0 0 1
p
Yi|X=1(y) 1−p= 0.95 p= 0.05 0 1
p
Yi|X=2(y) (1−p)2 = 0.9025 2p(1−p) = 0.095 p2 = 0.0025 1

and we can calculate the joint distribution of (X,Yi):

Yi
pX,Yi (x,y) 0 1 2 Σ

0 0.5 0 0 0.5
X 1 0.285 0.015 0 0.3

2 0.1805 0.019 0.0005 0.2
Σ 0.9655 0.034 0.0005 1

and finally we have the marginal distribution of Yi :
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y 0 1 2
pY (y) 0.9655 0.034 0.0005

and we obtain E(Yi) = 0.035,V(Yi) = 0.0347. Therefore,

E(U) = 3.5c

V(U) = 3.47c2

e) δU = V(U)1/2 /E(U) = 0.53
Since this coefficient of variation is greater than 30 %, the yearly income has a large variability.

�
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Example 37. — Stock Prices, simple portfolio Model Let
Xi = rate of return for stock i
µi = expected rate of return (historically 10% annually)
σi = price volatility (standard deviation of Xi, historically 15% monthly)

The value of a portfolio of the stocks

X = (X1,X2, . . .Xn)T

is:

U =
n∑
i=1

aiXi = aTX

E(U) =
n∑
i=1

aiµi = aTµ



2.6 Covariance 145

where the ai’s represent the weight of each stock in the portfolio, with:

0≤ ai ≤ 1
n∑
i=1

ai = 1

The risk of the portfolio is given by its variance:

V(U) = aTΣXa (2.2)

=
n∑
i=1

a2
iσ

2
i + 2

n∑
i=1

n∑
j=i+1

aiajσi,j︸ ︷︷ ︸
0 if Xi’s are independent

(2.3)



146 Chapter 2. Random Variables

where:

ΣX = E
(
(X−µ)(X−µ)T

)
=


σ2

1 σ12 σ13 · · ·
σ21 σ2

2 σ23 · · ·
σ31 σ32 σ2

3 · · ·
... ... ... . . .


is the covariance matrix for the stock returns. The idea is to find that the weights ai that
minimizes the variance while maximizing the value of U .
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Consider the following tech stocks weekly return data for 2016-2017:

stock µi σi δi
1 GOOGL 0.35 2.49 7.22
2 AAPL 0.53 3.12 5.85
3 FB 0.58 2.86 4.96
4 TWTR 0.32 7.01 21.86
5 TSLA 0.45 5.38 12.
6 MSFT 0.51 2.33 4.57
7 NFLX 0.66 5.26 7.93

0.3 0.4 0.5 0.6 0.7 0.8
0

1
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3

4
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3 4 5 6 7 8
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1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3

4

5

6

7

2

11

20

30

40

49

ΣX =



150 Chapter 2. Random Variables

6.2 4. 4.1 6.5 4.6 4.6 6.5
4. 9.7 1.4 6.8 6.6 3.2 6.
4.1 1.4 8.2 1.2 4. 3.7 3.2
6.5 6.8 1.2 49.2 3.7 5.8 11.6
4.6 6.6 4. 3.7 28.9 3.9 9.5
4.6 3.2 3.7 5.8 3.9 5.4 5.1
6.5 6. 3.2 11.6 9.5 5.1 27.7

a) if your portfolio only has stocks from Netflix and Facebook, what are the weights that
minimize the variance?

b) what is the expected value, variance and coefficient of variation of the return of the portfolio
in part a)?

c) repeat a) and b) for Apple and Twitter?
d) which portfolio would you recommend buying, why?
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Solution:
a) if your portfolio only has stocks from Netflix and Facebook, what are the weights that minimize

the variance?

V(U) = a2
3 V(X3) +a2

7 V(X7) + 2a3a7 Cov(X3,Y7)
= a2

3 ·8.2 + (1−a3)2 ·27.7 + 2a3(1−a3) ·3.2
= a3 (29.5186a3−48.9958) + 27.666

which is minimized at a∗3 = 0.83, which implies that a∗7 = 1−0.83 = 0.17.
b) what is the expected value, variance and coefficient of variation of the return of the portfolio

in part a)?

Evaluating the respective formulas with weights a∗3 = 0.83 and a∗7 = 0.17 gives

0.59,2.7,4.6,

respectively.
c) repeat a) and b) for Apple and Twitter?
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V(U) = a2 (45.2135a2−84.6517) + 49.1704

which is minimized at a∗2 = 0.94, which implies that a∗4 = 1−0.94 = 0.06.
The expected value, variance and coefficient of variation are

0.52,9.55,5.94,

resp.
d) which portfolio would you recommend buying, why?

�
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Midterm 1 solution
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Example 38. Consider the experiment of tossing 4 fair coins. Let X be the random variable
that denotes the number of heads that result. The sample space for this experiment is illustrated
in the table below, which also shows the number of heads in each possible case.

coin 1 H H H H H H H H T T T T T T T T
coin 2 H H H H T T T T H H H H T T T T
coin 3 H H T T H H T T H H T T H H T T
coin 4 H T H T H T H T H T H T H T H T
ΣH 4 3 3 2 3 2 2 1 3 2 2 1 2 1 1 0

a) Find the CDF and PMF of X and draw sketches of each one.
b) Determine the median, upper quartile and lower quartile and show them graphically in one

of the sketches of part a)
c) Determine P(0<X ≤ 3 | X ≤ 2)
d) BONUS: suppose two players play this game, and the one with the largest number of Hs

wins. Let X1 and X2 denote their corresponding random variables, the distribution of each
one corresponding to the one you calculate it in part a). Find the joint PMF and the
probability that player one wins by more than one point. Hint: X1 and X2 are independent.

Solution:
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a) Find the CDF and PMF of X and draw sketches of each one.

The PMF of X is given by

pX (x) =


1/16 if x= 0 or x= 4
1/4 if x= 1 or x= 3
3/8 if x= 2

b) Determine the median, upper quartile and lower quartile and show them graphically in one of
the sketches of part a): {2, 3, 1}

c) P(0<X ≤ 3 | X ≤ 2) = 0.91
d) BONUS: suppose two players play this game, and the one with the largest number of Hs wins.

Let X1 and X2 denote their corresponding random variables, the distribution of each one
corresponding to the one you calculate it in part a). Find the joint PMF and the probability
that player one wins by more than one point. Hint: X1 and X2 are independent.

�
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Example 39. The state of GA has license plates showing three numbers and four letters. How
many different license plates are possible

a) if the numbers must come after the letters?
b) if there is no restriction on where the letters and numbers appear?
c) as in part b) but replacing all numbers by an “A” and all letters by “B”?
d) BONUS: as in part b) but replacing all numbers < 5 by an “A”, all numbers ≥ 5 by “B”

and all letters by “C”?

Solution:
a) 103×264

b) The three number places can be arranged in
(7

3
)
different ways within the 7 places, each

arrangement having 103 possibilities for the digits. Similarly for the letter places which have
one way to be arranged in the remaining four places. Therefore,(

7
3

)
103264

c) Letters and numbers are treated as identical objects: of the n= 7 objects k = 3 are identical
of type A and the remaining (n−k) = 4 of type B. The number of ways one can arrange these
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n objects is (
7
3

)
d) BONUS: Here we don’t know how many of the numbers will be <5 so we add all the possibilities:

3∑
x=0

(
7
x

)

�
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Example 40. The annual rainfall, R, (accumulated generally during the winter and spring of each
year) in Orange County, California, has the following CDF:

r 0 1 2 3 4 5 6 7 . . .
FR(r) 0.00003 0.00048 0.0036 0.0175 0.0592 0.15 0.30 0.5 . . .

in inches, and assuming that R can only take on integer values. Suppose the current water policy
of the county is such that if the annual rainfall is less than 6 in. for a given year, water rationing
will be required during the summer and fall of that year.
Whenever the annual rainfall is less than 6 in. in any given year, the probability of damage to
the agricultural crops in the county is 30%. Assuming that crop damages between dry years (i.e.,
with rainfall less than 6 in.) are statistically independent. Determine:

a) the probability of water rationing in Orange County in any given year? and in the next 20
years?

b) the probability of crop damage in the next 4 years?
c) If there is an economic loss of c dollars every time there is crop damage in the region,

calculate the mean and variance of the economic loss in 4 years.
d) BONUS: Derive the joint PMF of the number of times there is rationing, and the number

of times there is crop damage, both during a period of three years.
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Solution:
a) the probability of water rationing in Orange County in any given year is P(R < 6) = 0.15.

In the next 20 years the probability that there will be rationing at least once, is similar to
flipping a biased coin 20 times and obtaining the probability of no heads, where the probability
of heads is p= 0.15:

1− (1−p)20 = 0.961
b) the probability of crop damage in the next 4 years can be done in two ways:

Method 1: focus on one year and then flip a coin four times.
Let

Yi =
{

1 if during the year i there is crop damage
0 otherwise

Thus, in this case p= P(Yi = 1) = 0.15×0.3 = 0.045 and the desired probability is

1− (1−p)4 = 0.168

Notice:

E(Yi) = 1×p+ 0× (1−p) = p= 0.045
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E
(
Y 2
i

)
= 12×p+ 02× (1−p) = p= 0.045

V(Yi) = E
(
Y 2
i

)
−E(Yi)2 = p(1−p) = 0.045×0.055 = 0.0429

Method 2: focus on 4-year period and use total probability. Let
X be the rv representing the number of drought years within the four years of interest,
SX = {0,1,2,3,4} , and Y be the number of times there was crop damage in the region during
the same period. Then, with p= 0.3:

P(Y = 0|X = i) = (1−p)i

The distribution of X can be obtained with the help of the table in problem 38 with probability
of heads of a = 0.15. For example, X = 1 appears 4 times on the table, and therefore
P(X = 1) = 4a(1−a)3 = 0.368:

x 0 1 2 3 4
pX (x) 0.522006 0.368475 0.0975375 0.011475 0.00050625
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and therefore the desired probability is with p= 0.3:

P(Y > 0) = 1−
4∑
i=0

P(Y = 0|X = i)P(X = i)

= 1−
4∑
i=0

(1−p)iP(X = i)

= 0.168

c) If there is an economic loss of c dollars every time there is crop damage in the region, calculate
the mean and variance of the economic loss in 4 years.

We are interested in U =∑4
i=1 cYi. By linearity of expectation we get

E(U) =
4∑
i=1

cE(Yi) = 4cE(Yi) = 4C×0.045 = 0.18c

and by result (2.1) for the variance of a sum we have,

V(U) =
4∑
i=1

c2V(Yi) = 4c2V(Yi) = 4c2×0.0429 = 0.1719c2
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To compute the mean and variance of Yi we used part b)
d) BONUS: Derive the joint PMF of X = the number of times there is rationing, and Y = the

number of times there is crop damage, both during a period of three years.

The distribution of X can be obtained with the help of the table in problem 3:

coin 1 H H H H T T T T
coin 2 H H T T H H T T
coin 3 H T H T H T H T
ΣH 3 2 2 1 2 1 1 0

Here the probability of heads is a= 0.15. For example, X = 3 appears 1 times on the table,
and therefore P(X = 3) = 1×a3(1−a)0 = 0.003375:

x 0 1 2 3
pX (x) 0.614125 0.325125 0.057375 0.003375

conditional distribution of Y |X, (p= 0.3) :
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y 0 1 2 3 Σ
pY |X=0(y) 1 0 0 0 1
pY |X=1(y) (1−p)1 p1 0 0 1
pY |X=2(y) (1−p)2 2(1−p)1p1 p2 0 1
pY |X=3(y) (1−p)3 3(1−p)2p1 3(1−p)1p2 p3 1

or:

y 0 1 2 3 Σ
pY |X=0(y) 1 0 0 0 1
pY |X=1(y) 0.7 0.3 0 0 1
pY |X=2(y) 0.49 0.42 0.09 0 1
pY |X=3(y) 0.343 0.441 0.189 0.027 1

and we can calculate the joint distribution of (X,Y ):
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Y
pX,Y (x,y) 0 1 2 3 Σ

0 0.614 0. 0. 0. 0.614
X 1 0.228 0.098 0. 0. 0.325

2 0.028 0.024 0.005 0. 0.057
3 0.0012 0.0015 0.0006 0.0001 0.0034
Σ 0.871 0.123 0.006 0.0001 1.

�
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Example 41. Let
Xi = rate of return for stock i
µi = expected rate of return (historically 10% annually)
σi = price volatility (standard deviation of Xi, historically 15% monthly)

Consider the following tech stocks weekly return data for 2016-2017:

stock µi σi δi
1 GOOGL 0.35 2.49 7.22
2 AAPL 0.53 3.12 5.85
3 FB 0.58 2.86 4.96
4 TWTR 0.32 7.01 21.86
5 TSLA 0.45 5.38 12.
6 MSFT 0.51 2.33 4.57
7 NFLX 0.66 5.26 7.93
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The covariance matrix for the stock returns:

6.2 4. 4.1 6.5 4.6 4.6 6.5
4. 9.7 1.4 6.8 6.6 3.2 6.
4.1 1.4 8.2 1.2 4. 3.7 3.2
6.5 6.8 1.2 49.2 3.7 5.8 11.6
4.6 6.6 4. 3.7 28.9 3.9 9.5
4.6 3.2 3.7 5.8 3.9 5.4 5.1
6.5 6. 3.2 11.6 9.5 5.1 27.7


a) if your portfolio only has stocks from Apple and Twitter, what are the weights that minimize

the variance?
b) what is the expected value, variance and coefficient of variation of the return of the portfolio

in part a)?
c) repeat a) and b) for Google and Microsoft?
d) Bonus: which portfolio would you recommend buying, why?

Solution:
a) for Apple and Twitter
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V(U) = (1−a2)
(
49.1704(1−a2) + 6.84451a2

)
+a2

(
6.84451(1−a2) + 9.73216a2

)
= a2 (45.2135a2−84.6517) + 49.1704

which is minimized at a∗2 = 0.94, which implies that a∗4 = 1−0.94 = 0.06.
b) The expected value, variance and coefficient of variation are

0.52,9.55,5.94,

resp.
c) for Google and Microsoft: a1 = 0.349 and the expected value, variance and coefficient of

variation are
0.45,5.14,5.0

resp.
d) which portfolio would you recommend buying, why? no right or wrong answers in this

particular case, it depends on each individual’s trade-off between value and risk.
�
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