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5. Function of Random Variables
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5.1 One Random Viable
We are interested in the distribution of

Y = g(X) (5.1)

when the distribution of X is known.
If we only need E(Y ) and V (Y ). It is not necessary to calculate the distribution of Y :

E(Y ) = E[g(X)] =
´
g(x)fX (x)dx

V (Y ) = E[g(X)2]− [E[g(X)]2

STOP! E(Y ) = E(g(X)) 6= g(E(X)).

naïve approach: g(E(X))
correct approach: E(g(X)).
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Example 1. X has the following distribution.

P(X =−1) = 0.2
P(X = 0) = 0.5
P(X = 1) = 0.3

Find the distribution of Y =X2.

Solution: Let
Y =X2

Using option one above, we have
P(Y = 0) = P(X2 = 0)

= P(X = 0)
= 0.5

P(Y = 1) = P(X2 = 1)
= P(X =−1) + P(X = 1)
= 0.5
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Example 2. The probability density function of X is given by the Uniform distribution in (0, 1):

fX (x) =

1 ; 0≤ x≤ 1
0 ; otherwise

Find the distribution of Y = eX .

Solution: Let Y = eX . Therefore,

FY (y) = P(Y ≤ y) = P
(
eX ≤ y

)
= P(X ≤ logy) = FX (logy)

=
logyˆ

−∞

fX (x)dx=
logyˆ

0

dx= logy

Therefore, differentiating,

fY (y) = dFY (y)
dy = d logy

dy = 1
y

�
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5.1.1 Single Discrete Random Variable
If the function g(X) is monotonic then, the recipe is

pY (y) =

pX (g−1(y)) if g−1(y) ∈ SX
0 otherwise

(5.2)
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Y  1 - ⅇ
-X2
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Notice from the figure that:

SY = {y1,y2 . . .y5}

P (Y = yi) = P (X = xi), i= 1,2, . . .5

xi = g−1(yi) =−2log(1−yi)

P (Y = yi) = P (X = g−1(yi))

or,

pY (yi) = pX (g−1(yi))

Notice: E(g(X))< g(E(X))
(always true for concave functions)
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From the figure for g(X) = 1/X:

SY = {y1,y2 . . .y5}

P (Y = yi) = P (X = xi), i= 1,2, . . .5

xi = g−1(yi) = 1/yi
P (Y = yi) = P (X = g−1(yi))

or,

pY (yi) = pX (g−1(yi))

Notice: E(g(X))> g(E(X))
(always true for convex functions)
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Y  X3

X

Y

E[X]

E[Y]

1 2 3 4 5 6 7 8 9 1012
3
4
5

6

7

8

9

10

P(Y=y)

P(X=x)

From the figure for g(X) =X3:

SY = {y1,y2 . . .y10}

P (Y = yi) = P (X = xi), i= 1,2, . . .10

xi = g−1(yi)

P (Y = yi) = P (X = g−1(yi))

Therefore,

pY (yi) = pX (g−1(yi))

Notice: E(g(X))> g(E(X))
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When g(x) is linear, the shape of the distribution remains the same:
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For non-monotonic functions, suppose the
solution of y = g(x) has k roots: x∗1, x∗2, ..., x∗k.
Therefore,

pY (y) = P (X = x∗1)∪P (X = x∗2)∪ ...∪P (X = x∗k)

=
k∑
i=1

P (X = x∗i )

In the figure, x∗1 =√y and x∗2 =−√y.

SY = {y1,y2 . . .y4}

pY (yi) = pX (√yi) +pX (−√yi), i= 1,2,3

pY (y4) = pX (0)

Notice: E(g(X))> g(E(X))
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From the above figures we have clarified the following important inequalities,

Jensen’s inequalities :
If g(X) is convex then:

E(g(X))≥ g(E(X))

If g(X) is concave then:
E(g(X))≤ g(E(X))

If g(X) is linear then:
E(g(X)) = g(E(X))
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Example 3. Given X ∼ Bin(n,p) and Y = eX . What is the distribution of Y, pY (y)?

Solution: The recipe:

pY (y) =

pX (g−1(y)) if g−1(y) ∈ SX
0 otherwise

Here, x= g−1(y) = logy and pX (x) =
(
n
x

)
px(1−p)n−x, so:

pY (y) =


(

n
logy

)
(p)logy(1−p)n−logy when logy is an integer

0 otherwise

Note: SY = {1, e,e2, ..., en}
�
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Example 4. X ∼ Bin(n,p) and Y =X2. What is the distribution of Y, pY (y)?

Solution: x = g−1(y) == ±√y, so x∗1 = √y and x∗2 = −√y. In this case x∗2 /∈ SX because it is
negative, and therefore

pY (y) =


(
n√
y

)
(p)
√
y(1−p)n−

√
y when √y is an integer

0 otherwise

�
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5.1.2 Single Continuous Random Viable
Here Y = g(X) is a monotone function and fX (x) is known. The PDF fY (y) is

fY (y) = fX

(
g−1(y)

)∣∣∣∣∣ ddyg−1(y)
∣∣∣∣∣ (5.3)

The derivation is analogous to the discrete case, where the key idea was P (Y = y) = P (X = g−1(y)).
In the continuous case this reads:

fY (y) dy = fX

(
g−1(y)

)
dx

and from the figure seen in class

dx=
∣∣∣∣∣ ddyg−1(y)

∣∣∣∣∣dy
which establishes the result.
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Notice how the shape of fY (y) changes due to Y = g(X):

Y 
1

X

P(Y=y)

P(X=x)

X

Y

E[X]

E[Y]

g(E[X])



26 Chapter 5. Function of Random Variables
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Example 5. Y = eX , X ∼N(µ,σ2). Find fY (y).

Solution:

fX (x) = 1
σ
√

2π
e
−(x−µ)2

/
2σ2

fY (y) = fX (g−1(y))

∣∣∣∣∣∣dg
−1

dy

∣∣∣∣∣∣
Since Y = eX = g(x), g−1(y) = log(y), and

∣∣∣∣dg−1

dy

∣∣∣∣ = 1
y . Therefore,

fY (y) = 1
yσ
√

2π
e
−(logy−µ)2

/
2σ2

which corresponds to the lognormal distribution, Y ∼ LN(µ,σ2). �
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Example 6. Let the random variable X be exponentially distributed with mean 2. You are
interested in Y = e−2X . Find fY (y).
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Example 7. The absolute velocity (X) of particles in a gas follows a Maxwell distribution, with
the PDF

fX(x) =


4x2

a3√π exp(−x
2

a2 ), x > 0
0, otherwise

where a is a constant. Determine the PDF fY (y) for the particle kinetic energy Y = 1
2mX

2,
where m is the mass of a particle.

Solution: Answer:

g(X) = 1
2mX

2

g−1(y) = ±
√

2y
m∣∣∣∣∣∣dg

−1

dy

∣∣∣∣∣∣ = 1√
2my



5.1 One Random Viable 31

fY (y) = fX (
√

2y
m

) 1√
2my +fX (−

√
2y
m

) 1√
2my

= fX (
√

2y
m

) 1√
2my + 0

= 8

a3
√

2πm3
y

e
− 2y

my2 ,y > 0

�
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5.2 Two Random Viables
Here

Z = g(X,Y )

When X,Y are discrete, assuming pX,Y is known:

pZ (z) =
∑

all (x,y): z=g(x,y)
pX,Y (x,y)

If the function g(X,Y ) is monotone:

pZ (z) =
∑
x∈SX

pX,Y (x,g−1) with: g−1 = g−1(x,z) or:

=
∑
y∈SY

pX,Y (g−1,y) with: g−1 = g−1(y,z)
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Example 8. Suppose Z=X+Y where X∼ Poi(λ), Y∼ Poi(µ) and X and Y are independent. What
is the pZ (z) ?

Solution: Given: pX (x)=λx

x! e
−λ and pY (y) = µy

y! e
−µ

pZ (z) =
∑

all (x,y): z=x+y
pX,Y (x,y)

=
∑
x∈SX

pX,Y (x,g−1) with: g−1 = g−1(x,z) = z−x

=
z∑

x=0
pX (x) ·pY (z−x)

=
z∑

x=0

λx

x!
µz−x

(z−x)!e
−(λ+µ)

= e−(λ+µ)
z∑

x=0

λxµz−x

x!(z−x)!

= (λ+µ)z
z! e−(λ+µ)

= Poi(λ+µ)



34 Chapter 5. Function of Random Variables

�



5.2 Two Random Viables 35

When X,Y are continuous, assuming fX and fY are known:

fZ(z) =
ˆ ∞
−∞

fX,Y

(
g−1,y

)∣∣∣∣∣ ∂∂z g−1
∣∣∣∣∣dy with: g−1 = g−1(z,y)

Alternatively, we can also use

fZ(z) =
ˆ ∞
−∞

fX,Y

(
x,g−1

)∣∣∣∣∣ ∂∂z g−1
∣∣∣∣∣dx with: g−1 = g−1(x,z)
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Example 9. Suppose Z=X+Y where X∼Exp(λ), Y∼Exp(µ) and X and Y are independent. What
is fZ (z)?

Solution: Given: fX (x) = λe−λx and fY (y) = µe−µy

Since we know:

fZ(z) =
ˆ ∞
−∞

fX,Y (g−1,y)

∣∣∣∣∣∣dg
−1

dz

∣∣∣∣∣∣dy with g−1 = g−1(z,y)

Since X and Y are independent:

fX,Y (x,y) = fX ·fY = λµe−λx+µy.

To obtain
∣∣∣∣dg−1

dz

∣∣∣∣, we let x= g−1 = z−y. Therefore:∣∣∣∣∣∣dg
−1

dz

∣∣∣∣∣∣=
∣∣∣∣∣ ddz (z−y)

∣∣∣∣∣= |1|= 1

and
fX,Y (g−1,y) = λµe−(λ(z−y)+µy)dy
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Therefore, fZ(z) can be calculated as (from the figure seen in class):

fZ(z) =
ˆ z

0
fX,Y (z−y,y)

∣∣∣∣∣∣dg
−1

dz

∣∣∣∣∣∣dy
= λµe−λz

ˆ z

0
e−y(µ−λ)dy

= λµ

µ−λ
(e−λz− e−µz)

Note: If X and Y have the same rate, it would be a Gamma (Erlang) distribution. �
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Example 10. Suppose Z = X ·Y where X∼Exp(λ), Y∼Exp(µ) and X and Y are independent.
What is fZ (z)?
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Solution:

y = z

x
,

∣∣∣∣∣∣dg
−1

dz

∣∣∣∣∣∣= 1
x

fZ (z) =
ˆ ∞

0
λµe−(λx+µ z

x ) 1
x
dx

�
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Example 11. Suppose Z=X+Y where X∼N(µX ,σX), Y∼N(µy,σy) and X and Y are independent.
Show that:

Z ∼N(µX +µy,σ
2
X +σ2

y)
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5.2.1 What if the distribution of X is unknown? (not covered)
If we only only know E(X) = µ and V(X) = σ2, we can still approximate E(Y ) and V(Y ) by Taylor
Series around the mean of X:

Y = g(X)≈ g(µ) + (X−µ)g′(µ) + 1
2(X−µ)2g′′(µ) + . . .

2nd-order approximation for E[Y]:

E(Y )≈ g(µ) + 1
2g
′′(µ)σ2 (5.4)

1st-order approximation for V[Y]:

V(Y )≈ g′(µ)2σ2 (5.5)
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Several random variables
Let Y = g(X1,X2, . . .Xn) and recall the vector notation:

X = (X1,X2, . . .Xn)T

The joint PMF is not known; all we know are:

E(Xi) = µi , V(Xi) = σ2
i , Cov(Xi,Xj) = σij

and µ = {µ1,µ2, . . .µn}. A second-order Taylor series expansion of the scalar-valued function g(·)
can be written compactly as

g(X) = g(µ) + (X−µ)TG + 1
2!(X−µ)TH(X−µ) + · · ·

where G and H are the gradient vector and the Hessian matrix of g evaluated at X) = µ, resp.
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2nd-order approximation for E(Y ):

E(Y )≈ g(µ) + 1
2eT (ΣX�H)e

= g(µ) + 1
2

n∑
i=1

n∑
j=1

σij ·

 ∂2g

∂Xi∂Xj


= g(µ) + 1

2

n∑
i=1

σ2
i ·

 ∂2g

∂X2
i

+
n∑
i=1

n∑
j=i+1

σij ·

 ∂2g

∂Xi∂Xj


︸ ︷︷ ︸

0 if Xi’s are independent

(5.6)

where e is the column vector whose entries are all 1’s, and � is the Hadamard product, which
takes two matrices of the same dimensions and produces another matrix where each element i, j is
the product of elements i, j of the original two matrices. It should not be confused with the more
common matrix product.
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1st-order approximation for V(Y ):

V(Y )≈GTΣXG

=
n∑
i=1

σ2
i ·
(
∂g

∂Xi

)2 (5.7)
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Example 12. — * The hydraulic head loss in a pipe may be determined by the Darcy-Weisbach
equation as follows:

H = fLV 2

2Dg

where:
L=length of a pipe, V=flow velocity of water in a pipe, D=pipe diameter, f=coefficient of friction,
g=gravitational acceleration=32.2 ft/sec2. Suppose a pipe has the following properties:

i Xi µi δi
1 L 100. 0.1
2 D 1. 0.1
3 f 0.02 0.2
4 V 10. 0.15

(a) Approximate the mean and standard deviation of the hydraulic head loss of the pipe.

Solution: (a) We have:
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Xi µi σi
1 L 100. 10.
2 D 1. 0.1
3 f 0.02 0.004
4 V 10. 1.5

G =



fV 2

2Dg
−fLV

2

2D2g
LV 2

2Dg
fLV
Dg

 and H =


0 − fV 2

2D2g
V 2

2Dg
fV
Dg

− fV 2

2D2g
fLV 2

D3g − LV 2

2D2g −
fLV
D2g

V 2

2Dg − LV 2

2D2g 0 LV
Dg

fV
Dg −fLV

D2g
LV
Dg

fL
Dg

 , evaluating at µ gives:

G =


0.031
−3.106
155.28
0.621

 and H =


0. −0.03 1.55 0.01
−0.03 6.21 −155.28 −0.62
1.55 −155.28 0. 31.06
0.01 −0.62 31.06 0.06


and the mean and variance of H are approximately:
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E(H) = g(µ) + 1
2

n∑
i=1

σ2
i ·

 ∂2g

∂X2
i


= 0.02×100×102

2×1×32.2 + 1
2(6.21×0.01 + 0.06×2.25)

= 3.20652

V(H) =
n∑
i=1

σ2
i ·
(
∂g

∂Xi

)2

= 0.000961×100.+ 9.64724×0.01 + 24111.9×0.000016 + 0.385641×2.25
= 1.44605

�
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Example 13. Refer to example 12 and assume that the correlation between D and f is 0.7 and
between V and f , 0.4. Show that the expected value and variance of H are now 3.237 and 1.639,
respectively.
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Solution: Hint:

E(H) = 0.02×100×102

2×1×32.2 + 1
2(−155.28σ2,3−155.28σ3,2 + 31.056σ3,4 + 31.056σ4,3+

+ 6.211σ2
2 + 0.062σ2

4)
V(H) =−3.106

(
155.28σ3,2−3.106σ2

2
)

+ 0.621
(
155.28σ3,4 + 0.621σ2

4
)

+

+ 155.28
(
−3.106σ2,3 + 0.621σ4,3 + 155.28σ2

3
)

+ 0.000961σ2
1

�
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5.3 Important distributions for statistics
5.3.1 The chi-square distribution with r degrees of freedom

The density function is given by:

fχ2(x) = 2−r/2e−x/2x r
2−1

Γ
(
r
2

) , x > 0.

and

E (X) = r

V (X) = 2r

Chi-Sqr probability tables.

https://people.smp.uq.edu.au/YoniNazarathy/stat_models_B_course_spring_07/distributions/chisqtab.pdf
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It is important because:

Fact 5.5 If Y1, Y2 , . . . ,Yr are independent standard normal random variables, Yi ∼N(0,1), then
r∑
j=1

Y 2
j ∼ χ2(r).
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Fact 5.6 If X ∼N(0,1),then Y =X2 ∼ χ2(1).

Proof Let Y =X2. Then, using the techniques in this chapter

fY (y) = 1
2√y

(
fX

(√
y
)

+fX

(
−√y

))
= 1√

2πy e
− 1

2y, y > 0.

�
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Fact 5.7 If Y1 ∼ χ2(r) and Y2 ∼ χ2(s) , and are independent, then

Y1 +Y2 ∼ χ2(r+ s).
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5.3.2 Student’s t-distribution
If U ∼N (0,1) and V ∼ χ2(r) are independent, then

T = U√
V/r
∼ t(r)

has a t-distribution with r degrees of freedom:

fT (t) =
Γ
(
r+1

2

)
√

(πr)Γ
(
r
2

)
1 + t2

r

−
r+1

2

, t ∈ R.

and:

E(T ) = 0

V(T ) = r/(r−2), r > 2

Note, as r→∞ then t(r)→ N(0,1) .

t-distribution tables.

http://www.math.odu.edu/stat130/t-tables.pdf
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