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10 Chapter 7. Linear regression

7. Linear regression
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7.1 The regression model
A simple linear regression model takes the form

Y = β0 +β1x+ ε (7.1)
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For a sample {(X1,Y1),(X2,Y2) . . .(Xn,Yn)} a re-
gression model takes the form

Yi = β0 +β1xi+ εi, i= 1,2, . . . ,n, (7.2)

where Y1,Y2, . . . ,Yn are observable rv’s condi-
tional on X1 = x1,X2 = x2, . . . ,Xn = xn and

εi
iid∼ N(0,σ2)

are non-observable random variables.
x1 x2 x3

N(β0 +β1xi,σ
2)E(Y |x) = β0 +β1x

E(Y |X = x1)
E(Y |X = x2)

E(Y |X = x3)

x

Y

Terminology :
xi is called an explanatory variable or independent variable or predictor or factor ;
Yi is the response or dependent variable;
εi is the error random variable, whose realizations are called residual.
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Note: xi is not considered a random variable in linear regression because it is a realization
the random variable Xi , i.e. we take the values of xi as “given”, and the term Yi should be
interpreted as a conditional:

Yi↔ Yi |Xi = xi
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The assumption of the regression model is:

εi
iid∼ N(0,σ2)

This means:
1. Normality: εi ∼ N(0,σ2) for i= 1, . . . ,n.
2. Independence of the errors: ε1, . . . , εn are independent.
3. Homoscedasticity: V(εi) = σ2, with σ2 constant for all i= 1, . . . ,n.

Therefore,

Yi∼N(β0 +β1xi,σ
2) (7.3)
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”Linear" model means that it is linear in the unknown parameters β = β0,β1,β2 . . ., and not in
x. For example, the model

Yi = β0 +β1xi+β2x
2
i + εi, i= 1,2, . . . ,n (7.4)

is a linear regression model because it is linear in β0,β1,β2.
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7.2 Matrix notation
The regression model (7.2) is a set of simultaneous equations which can be written more concisely
as

Y = Xβ+ε (7.5)

where

Y =


Y1
...
Yn

 , X =


1 x1
... ...
1 xn

 , β=
(
β0
β1

)
, ε=


ε1
...
εn

 .



7.2 Matrix notation 17

Multiple regression model.
With p explanatory variables, the model takes the form:

Yi = β0 +β1xi1 +β2xi2 + · · ·+βpxip+ εi (7.6)

Systemx3

x2

x1

...
xp

fa
ct
or
s

y response

In matrix form it still reads as (7.5) defining: Y = (Y1, . . . ,Yn)T , β= (β0,β1, . . . ,βp)T , ε= (ε1, . . . , εn)T
and X is a n× (1 +p) matrix, called the design matrix:

X =


1 x11 · · · x1p
1 x21 · · · x2p
... ... . . . ...
1 xn1 · · · xnp

 .
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Interpretation of βj. In the model

Y = β0 +β1 ·x1 +β2 ·x2 +β3 ·x3

we can see that

∂Y

∂xj
= βj , j = 1,2,3.

which means that the parameter βj represents the marginal change in Y due to a change in xj .
One should always verify that the sign of βj accords with intuition.
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A quadratic model

Yi = β0 +β1xi+β2x
2
i + εi, i= 1,2, . . . ,n

can be written in the form of Equations (7.5) by defining

X =


1 x1 x2

1
... ... ...
1 xn x2

n

 , β=

 β0
β1
β2

 .
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Main effects and interactions give the following regression function:

Y = β0 +β1x1 +β2x2︸ ︷︷ ︸
main effects

+ β3x1x2︸ ︷︷ ︸
interaction term

+ε

can be written in the form of Equations (7.5) by defining

X =


1 x11 x12 x11x12
... ... ... ...
1 xn1 xn2 xn1xn2

 , β=


β0
β1
β2
β3

 .
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Example application: Annual income model Let:
Y is annual income ($1000/year),
x1 is educational level (number of years of schooling),
x2 is number of years of work experience, and
x3 is gender (x3 = 0 is male, x3 = 1 is female),

Suppose we estimated the following model

Y = β0 +β1 ·x1 +β2 ·x2 +β3 ·x3 + ε

and obtained (using statistical software),

β̂=


β̂0 = 0.8
β̂1 = 0.8
β̂2 = 0.5
β̂3 =−3.0

 and σ̂ = 9.
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We can answer questions like: “what is the probability that a female with 16 years education and
no work experience will earn more than $40,000/year?”
Recall that

Y∼N(β0 +β1 ·x1 +β2 ·x2 +β3 ·x3,σ
2)

The mean for such a person is 24.8, so standardizing yields the probability:

P (Y > 40) = P ((Y −24.8)/9> (40−24.8)/9)
= P (Z > 1.69)
≈ 0.05.

The gender variable x3 is an indicator variable, since it only takes on the values 0/1 (as opposed
to x1 and x2 which are quantitative).
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7.3 The method of ordinary least squares (OLS)
To estimate the βj ’s we minimize the sum of squared errors, SSE:

SSE =
n∑
i=1

ε2
i = εTε= (Y−Xβ)T (Y−Xβ)

over all possible values of the intercept and slopes. To minimize (Y−Xβ)T (Y−Xβ) with respect
to β, we differentiate with respect to β and equating to 0:

2XT (Y−Xβ) = 0, → XTXβ= XTY.

which is a set of linear simultaneous equations called the normal equations for the linear model.

Fact 7.8 — OLS estimators. Provided XTX is non-singular, the OLS estimators are:

β̂=
(
XTX

)−1
XTY.
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The matrix C. For convenience, let:

C =
(
XTX

)−1 → β̂= CXTY.

Fact 7.9 — Properties of the OLS estimators. The OLS estimators have useful properties:

a) β̂ is unbiased: E
(
β̂
)

= β
b) β̂ is a linear transformation of Y, so it has the (multivariate) normal distribution

β̂∼ N(β,Σ)

where Σ is the covariance matrix of β̂, and

Σ = σ2C.
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This result implies that

β̂i ∼N(βi,σ2cii) (7.7)

where cij is the (i, j) element of C, so

V
(
β̂i
)

= σ2cii

Cov
(
β̂i, β̂j

)
= σ2cij
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But the true variance σ2 is unknown, and therefore has to be estimated.

Fact 7.10 — An unbiased estimator for σ2.

σ̂2 = SSE

n−p−1 is unbiased for σ2.

Furthermore,

(n−p−1) σ̂2

σ2 ∼ χ2
n−p−1.

Finally, β̂ is independent of σ̂2.

We conclude that the estimator of the covariance matrix is Σ̂ = σ̂2C.
The standard errors of the coefficient estimates β̂= {β̂0, β̂1, . . . , β̂p} are√

V
(
β̂i
)

= σ̂
√
cii
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7.4 Testing the significance of coefficients
Since

β̂i ∼N(βi,σ2cii) then Zi = β̂i−βi
σ
√
cii
∼N(0,1).

Using the result that

(n−p−1)σ̂2

σ2 ∼ χ2
n−p−1

and remembering the definition of a t-distribution we conclude that

T = β̂i−βi√
V
(
β̂i
) ∼ tn−p−1 (7.8)

This enables us to carry out hypothesis tests or calculate confidence intervals for coefficients.
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Significance test for βi : H0 : βi = 0 against H1 : βi 6= 0
Let t0 = β̂i/

√
V
(
β̂i
)
, then we reject H0 if

|t0|> tα/2 (7.9)

where tα/2 is the critical values from the distribution tn−p−1, which is typically ≈ 2. This test is
important because if we cannot reject H0 it means that the variable xi does not help
explain Y and therefore should be removed from model.
Recall that instead of this T-test we can also use the p-value, if available, and reject H0 if p < α.
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7.5 Goodness-of-fit: R2

The Coefficient of determination
R2 measures the proportion of the total
variations in Y that can be explained by
the linear model and it is defined as

R2 = 1− SSE
SST

(7.10)

(a): ∑n
i=1 ε

2
i = SST , (b): ∑n

i=1 ε
2
i = SSE

It quantifies the reduction in variability of the response variable as a result of the linear relationship
with X.
R is called the sample correlation coefficient and ≈ ρX,Y as n→∞, and therefore measures
the strength of the linear relationship.
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7.5.1 Adjusted R2

The problem with R2 is that it cannot decrease when additional explanatory variables are added to
the model, even if they have no significant effect on Y. An alternative measure, computed by most
econometrics packages, is the so-called ‘Adjusted R2” :

R̄2 = 1− SSE/(n−p−1)
SST/(n−1) = 1− σ̂2

s2
Y

(7.11)

where the numerator and denominator of R2 are divided by their respective degrees of freedom.
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7.5.2 One-way ANOVA
We can decompose the total variance as follows:

SST = SSR + SSE
n∑
i=1

(yi− ȳ)2 =
n∑
i=1

(ŷi− ȳ)2 +
n∑
i=1

(yi− ŷ)2

where SSR = regression sum of squares, and the predicted values or fitted values is ŷi = β̂0 + β̂1x1,i+
β̂2x2,i+ · · · . It turns out that under the no hypotheses H0 : β1 = β2 = · · ·= 0 the statistic:

F = SSR/p

SSE/(n−p−1) = MSR

MSE
(7.12)

follows an Fν1,ν2 distribution, where ν1 = p and ν2 = n−p−1. As usual, we will reject the no hy-
pothesis if the observed F statistic is greater than the critical value from the F probability tables.

http://socr.ucla.edu/Applets.dir/F_Table.html
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7.6 Assessing the model
The first step in looking at the adequacy of a model is to check the assumptions on which it is
based:

The assumption of the regression model is:

εi
iid∼ N(0,σ2)

This means:
1. Normality: εi ∼ N(0,σ2) for i= 1, . . . ,n.
2. Independence of the errors: ε1, . . . , εn are independent.
3. Homoscedasticity: V(εi) = σ2, with σ2 constant for i= 1, . . . ,n.

Residual plots (residuals versus the fitted values) are the main tool for checking model assumptions.
No discernible pattern in this plot is a good sign of independence, linearity and constant variance.
The Q-Q plot (normal probability plot) is a scatterplot between the observed quantiles of residuals
vs. the theoretical quantiles from the normal distribution. A linear relationship indicates good
agreement with the normal distribution.
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QQ-plots for datasets respecting (left column) and violating (right column) the normality assumption.
Source.

https://bookdown.org/egarpor/SSS2-UC3M/diagnostics.html
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Example 1. — AIDS data for the USA These data are for AIDS incidence in the USA, adjusted for
reporting delays. The data are taken from Rosenberg, P.S. and Gail, M.H. (1991): Backcalculation
of flexible linear models of the Human Immunodeficiency Virus infection curve. Applied Statistics,
40, 269-282.
Newly reported cases are recorded quarterly and the variable Time therefore counts 3-monthly
periods, staring with the first quarter in 1982.
The scatterplot shows that the trend is not linear.

http://www.stats.ox.ac.uk/~myers/stats_materials/datasets/AIDS.txt
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Let’s fit the model

Yi = β0 +β1xi+β2x
2
i + εi, i= 1,2, . . . ,n

and test the coefficients β1, β2. We can use a standard computer package to carry out the
regression.
Variable Coefficient s.e. t-value p-value
Intercept β0 343.5913 87.7446 3.9158 0.0007
Time β1 −60.1380 15.5514 −3.8671 0.0008
Time2 β2 15.6277 0.5806 26.9158 0.0000
R2 = 0.9976 d.f.= 22 σ̂ = 134.7 SSE = 399155

The fitted model is

Cases= 343.5913−60.1380×Time+ 15.6277×Time2.

The value R2 = 0.9976 above means that if it is excellent. But can this model be relied upon?
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• The points to the right seem a little more spread out but there is no indication that spread
is a function of fitted value.
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• There does seem to be some curvature − re-think the assumption about the model?
• We also need to check up on the third assumption.
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This doesn’t look too bad. We can therefore conclude that we have a reasonable model which
could perhaps be improved, but which fits the data pretty well for the most part.
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Example 2. — Testicular cancer The table below comprises data from Lee, Hitosugi and Peterson
(1973): Rise in mortality from tumors of the testis in Japan, 1947-70. J. Nat. Cancer Inst., 51,
1485-90. It gives the populations and numbers of deaths from testicular cancer in 5-year age
groups and 5-year periods in Japan. The ages refer to the lowest age in each group and the
populations are expressed in millions of persons.

Table 5.4 Deaths in Japan from testicular cancer
1951-55 1956-60 1961-65 1966-70

Age Popn. Dths Popn. Dths Popn. Dths Popn. Dths
20 20.4 27 21.3 39 22.2 56 24.0 83
25 17.2 40 20.0 58 20.6 97 21.8 125
30 12.6 18 17.1 54 19.9 77 20.8 129
35 11.7 13 12.5 36 17.0 70 19.9 101
40 11.5 26 11.5 32 12.2 29 16.8 67
45 10.3 16 11.2 26 11.1 34 12.0 37
50 9.3 16 9.8 27 10.7 27 10.7 29
55 7.6 17 8.7 19 9.2 32 10.1 39
60 5.9 13 6.8 21 7.9 21 8.4 31

http://www.stats.ox.ac.uk/~myers/stats_materials/datasets/testis.txt
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The scatterplot shows that the mean death rate from cancer of the testis in Japan has been rising
steadily since 1951.
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Note that there is no variability in the explanatory variable, but there is marked variability in
the response. This is clearly shown in the boxplots.
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Boxplots of death rates

It is clear that the variability in the data increases as the year variable increases. What should
one do about this?
The answer is to look for a transformation which will stabilise the variance. Here we need a
transformation which compresses large values of the response more than it compresses smaller
values; something like a square root or a cube root or possibly even a log transformation. Taking
the log of the death rate results in the next scatterplot.
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This looks reasonable and we could now go ahead and fit a model of the form

log(Yi) = β0 +β1xi+ εi, i= 1,2, . . . ,n.

With the log transformed data, the fitted model turns out to be as given below.
Linear Model
Response: log(Death rate)
Variable Coefficient s.e. t-value p-value
Intercept β0 −105.9198 14.4887 −7.3105 0.0000
Year β1 0.0545 0.0074 7.3808 0.0000
r2 = 0.6157 d.f.= 34 s= 0.2479 SSE = 2.0891

Of course stable variance alone is not enough because the residuals also need to be normally
distributed. This can be checked with a normal q-q plot of the residuals.
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Normal probability plot of testicular cancer residuals

The plot seems to show a very rough straight line, but it is not entirely convincing.
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7.7 Model selection
Question: With a large number of potential predictors, how do we choose the predictors to include
in the model?

Occam’s Razor (The law of parsimony): “Among competing hypotheses, the one with the fewest
assumptions should be selected."
→ choose the model with the fewest number of parameters that explains the data.

Good fit Criteria
A good model would give yes to the following questions:
• are the assumptions met?
• good Adj-R2?
• good t-statistics for the βj ’s (|t0|> 2) ?
• the sign of βj ’s accords with intuition?

http://en.wikipedia.org/wiki/Coefficient_of_determination#Adjusted_R2
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Example 3. — * Housing values in suburbs of Boston. Home values for 506 Boston suburbs with
potential influential factors is shown below. ( Source: Belsley D. A., Kuh, E. and Welsch, R. E.
(1980) Regression Diagnostics.).

Xi Description
1 Per capita crime rate by town
2 Proportion of residential land zoned for lots over 25000 square feet
3 Proportion of non-retail business acres per town
4 Charles River dummy variable (1 if tract bounds river, 0 otherwise)
5 Nitrogen oxide concentration (parts per 10 million)
6 Average number of rooms per dwelling
7 Proportion of owner-occupied units built prior to 1940
8 Weighted mean of distances to five Boston employment centers
9 Index of accessibility to radial highways
10 Full-value property-tax rater per $10000
11 Pupil-teacher ratio by town
13 Lower status of the population (percent)



7.7 Model selection 51

The models below are the output of an automated model selection procedure, for the response
variable Y = median value of owner-occupied homes in $1000s, and for models that only
consider main effects:

Yi = β0 +β1xi1 +β2xi2 + · · ·+βpxip+ εi

The parameter table gives the parameter values in the second row and the T-statistic in the third
row in bold.

a) Explain how the parameter values should be used to assess the adequacy of a model; give 3
example.

b) decide which model is the “best" and carefully explain why.
c) decide which model is the “worst" and carefully explain why.
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Example 4. — * Data from 93 cars on sale in the USA in 1993. Data from 93 cars, selected at
random, on sale in the US in 1993 with 27 variables. Source: Lock, R. H. (1993) 1993 New Car
Data. Journal of Statistics Education 1(1).
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Xi Description
1 Minimum Price (in $1,000): price for a basic version
2 Price (in $1,000): average of Min.Price and Max.Price.
3 Maximum Price (in $1,000): price for ’a premium version’
4 City MPG (miles per US gallon by EPA rating).
5 Highway MPG.
6 Number of cylinders (missing for Mazda RX-7, which has a rotary engine).
7 Engine size (litres).
8 Horsepower (maximum).
9 RPM (revs per minute at maximum horsepower)
10 Engine revolutions per mile (in highest gear).
11 Fuel tank capacity (US gallons).
12 Passenger capacity (persons).
13 Length (inches).
14 Wheelbase (inches).
15 Width (inches).
16 U-turn space (feet).
17 “Rear” seat room (inches) (missing for 2-seater vehicles).
18 Luggage capacity (cubic feet) (missing for vans).
19 Weight (pounds).



58 Chapter 7. Linear regression

The models below are the output of an automated model selection procedure, for the response
variable Y = the (log of) price of the basic car, and for models that only consider the main
effects. The parameter table gives the parameter values in the second row and the T-statistic in
the third row. You can ignore the column labeled “BIC”.

a) Explain how the parameter values should be used to assess the adequacy of a model; give
an example.

b) decide which model is the “best" and carefully explain why.
c) decide which model is the “worst" and carefully explain why.
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More examples like this here.

https://sway.com/DSmAylF4zaeGf49C
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Solution:
a) Explain how the parameter values should be used to assess the adequacy of a model; give an

example.

What is important about the parameter value is its sign, in that it has to make intuitive
sense. For example in model M-3 the parameter β8, which is the parameter for horsepower, is
positive. This makes sense because the price of a car should increase with its horsepower.

b) decide which model is the “best" and carefully explain why.

The residuals and future plots for all models are very similar and not particularly faulty, so
the basic assumptions are met fairly well by all models.
By the principle parsimony, the best model is the one with the fewest number of parameters, all
of them significant (good t-test) and a good Adj-R2. I would choose M-3, because the closest
competitor, M-7, has only a slightly better Adj-R2 but at the high price of one additional
variable.

c) decide which model is the “worst" and carefully explain why.
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I would choose model M-8 because it has six parameters, two of them not significantly different
from zero. Model M-9 is very similar but has slightly better T-statistics.

�



64 Chapter 7. Linear regression

Example 5. — * Climate change This data series from 1959 - 2016 includes the annual global
mean surface temperature (Temp) and two possible explanatory variables, the year and the
annual average fraction of CO2 contained in the earth’ s atmosphere (CO2). Source

Description
X1 Year
X2 CO2 atmospheric composition is defined as the number of molecules

of carbon dioxide divided by the number of molecules of dry air
multiplied by one million (ppm).

Y The annual average Temperature is measured in units of 1/100 of a
degree centigrade increase above the 1950-1980 mean, often referred
to as the global surface temperature anomaly.

The models below are the output of an automated model selection procedure, for the response
variable Y . The parameter table gives the factor that the parameter multiplies in the first row
(“1.” means intercept), the parameter values in the second row and the T-statistic in the third
row. You can ignore the column labeled “BIC”.
In the models below, decide which model is the best and explain why.

https://data.giss.nasa.gov/gistemp/
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Solution: Solved in class. �
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7.8 Making predictions
Once the coefficients have been estimated and the assumptions verified, the fitted equation can
be used to obtain predictions for Y for any given values x0 = (1,x01, . . . ,x0p) of the explanatory
variables x = (1,x1, . . . ,xp). There are two type of predictions that we can do: prediction of the
mean response and prediction of a particular realization.
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7.8.1 Prediction of the mean response at x0,E(Y | x0) = x0β.
The point estimate of E(Y | x0) = x0β is:

Ŷ0 = x0β̂,

= β̂0 + β̂1x01 + β̂2x02 + · · ·+ β̂px0p

and is an unbiased estimator of x0β. For the confidence interval for E(Y | x0) = x0β, we note
that Ŷ0 is a linear combination of the random vector β̂ and therefore must be normally distributed
with

E(Ŷ0) = x0β, V(Ŷ0) = x0Σx0
T = σ2x0Cx0

T .

Thus,

T = x0β̂−x0β

σ̂
√

x0Cx0T
∼ tn−p−1

and an inequality can be constructed and re-arranged for x0β in the usual way:
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(1−α)% Confidence interval for E(Y | x0):

x0β̂± tα/2 σ̂
√

x0Cx0T
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7.8.2 Prediction of a particular realization of Y0 = x0β+ ε0
The point estimate of Y0 = x0β+ ε0, with ε0 ∼N(0,σ2) is also:

Ŷ0 = x0β̂

and is an unbiased estimator of Y0. For the confidence interval, we know that Y0 ∼N(x0β,σ2),
and therefore Y0− Ŷ0 has a normal distribution with mean

E
(
Y0− Ŷ0

)
= x0β−x0β= 0

V
(
Y0− Ŷ0

)
= V(y0) + V(x0β̂)
= σ2 +σ2x0Cx0T

= σ2(1 +x0Cx0T ).

since Y0 and β̂ are independent. Then,

T = Y0−x0β̂

σ̂
√

1 +x0Cx0T
∼ tn−p−1. (7.13)
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(1−α)% Confidence interval for a particular realization of Y | x0:

x0β̂± tα/2σ̂
√

1 +x0Cx0T
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7.9 Simple linear regression
In this case:

β=
(
β0
β1

)
, X =


1 x1
... ...
1 xn

 , XTY =
( ∑

Yi∑
xiYi

)
, XTX =

(
n

∑
xi∑

xi
∑
x2
i

)

C =

( ∑
x2
i −∑xi

−∑xi n

)
n
∑(xi− x̄)2

It will be convenient to define :

Sxy =∑(xi− x̄)(Yi− Ȳ ) Sxx =∑(xi− x̄)2 Syy =∑(Yi− Ȳ )2

=∑
xiYi−nx̄Ȳ =∑

x2
i −nx̄2 =∑

Y 2
i −nȲ 2

≈ nCov(X,Y ) = (n−1)S2
X = (n−1)S2

Y
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where S2
X = 1

n−1
∑n
i=1(xi− x̄)2 and, S2

Y = 1
n−1

∑n
i=1(Yi− Ȳ )2 are the unbiased variance estimators

of previous chapters.

so that

C = 1
nSxx

( ∑
x2
i −∑xi

−∑xi n

)

β̂=
 β̂0
β̂1

= CXTY = 1
nSxx

( ∑
x2
i
∑
Yi−

∑
xi
∑
xiYi

−∑xi
∑
Yi+n

∑
xiYi

)
= 1
nSxx

(
nȲ

∑
x2
i −nx̄

∑
xiYi

nSyy

)
.

Fact 7.17 The OLS expressions for β̂0 and β̂1 are:

β̂1 = Sxy
Sxx

, and β̂0 = Ȳ − β̂1x̄.
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Fact 7.18 — The variance of β̂0 and β̂1.

V
(
β̂1
)

= σ̂2

Sxx
, V

(
β̂0
)

= σ̂2
∑
x2
i

nSxx
, and Cov

(
β̂0, β̂1

)
=−σ̂2

∑
xi

nSxx

where σ̂2 = SSE
n−2 and (n−2)σ̂2

σ2 ∼ χ2
n−2

→ Since Sxx is proportional to V(X), a more precise estimate the slope is obtained for x-
values that are more spread out.
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Significance test for β1 : H0 : β1 = 0 against H1 : βi 6= 0
→ Reject H0 if

| β̂1
σ̂/
√
Sxx
|> tα/2.

This test is important because if we can’t reject H0 it means that the variable Xi does not help
explain Y and therefore should be removed from model.

The regression line passes by (x̄, Ȳ )

E(Yi) = β̂0 + β̂1xi

= Ȳ − β̂1x̄+ β̂1xi

= Ȳ + β̂1(xi− x̄)
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We can also estimate β0 and β1 without matrices by differentiating

SSE(β0,β1) =
n∑
i=1

ε2
i =

n∑
i=1

(yi−β0−β1xi)2

and solving:

∂SSE

∂β0
=−2

n∑
i=1

(yi−β0−β1xi) = 0

∂SSE

∂β1
=−2xi

n∑
i=1

(yi−β0−β1xi) = 0

for β0 and β1. We would get the same result.
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SSE,R2

SSE = Syy− β̂1Sxy

= Syy−S2
xy/Sxx. (proof)

Since SST = Syy and SSE = Syy−S2
xy/Sxx, we can see that

R2 =
S2
xy

SxxSyy
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R≈ ρX,Y , the correlation between X and Y . Recall

ρ(X,Y ) = Cov(X,Y )√
V(X)V(Y )

=
E
[(
X−E[X]

)(
Y −E[Y ]

)]√
E
[(
X−E[X]

)2]E[(Y −E[Y ]
)2]

≈
1
n

∑(xi− x̄)(yi− ȳ)√
1
n

∑(xi− x̄)2 1
n

∑(yi− ȳ)2

=
1
nSxy√

1
nSxx

1
nSyy

= Sxy√
SxxSyy

=R

Connection between the slope and the correlation coefficient:

β̂1 = SY
SX

R.
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→ Since ρ̂=R, the test H0 : β1 = 0 is similar to H0 : ρ= 0.
To see this,

R2 =
S2
xy

SxxSyy
=
S2
xy

S2
xx

Sxx
Syy

= β̂2
1
Sxx
Syy

= β̂2
1
S2
X

S2
Y

.

and the result follows.
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7.9.1 Predictions
Suppose we wish to predict E (Y ) at the point x0. Then x0 = (1,x0) so

V
(
Ŷ0
)

= σ̂2x0Cx0
T = σ̂2

 1
n

+ (x0− x̄)2

Sxx


And we obtain:

(1−α)% Confidence interval for E(Y | x0):

β̂0 + β̂1x0± tα/2,n−2 σ̂

√
1
n

+ (x0− x̄)2

Sxx

(1−α)% Confidence interval for a particular realization of Y :

β̂0 + β̂1x0± tα/2,n−2 σ̂

√
1 + 1

n
+ (x0− x̄)2

Sxx
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Example 6. — Divorces in England and Wales The table below gives the data and summary for:

Y = the annual number of divorces recorded in England and Wales between 1975 and 1980.
x = years since 1974 (x= 1 means year 1975).

Total
xi 1 2 3 4 5 6 21
yi 120.5 126.7 129.1 143.7 138.7 148.3 807.
xiyi 120.5 253.4 387.3 574.8 693.5 889.8 2919.3
x2
i 1 4 9 16 25 36 91
y2
i 14520.3 16052.9 16666.8 20649.7 19237.7 21992.9 109120.

We therefore obtain

n x̄ ȳ Sxy Sxx Syy β̂1 β̂0 σ̂2 R2

6. 3.5 134.5 94.8 17.5 578.72 5.417 115.54 16.294 0.887
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.
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Divorces (thousands)

Year

Divorces in England and Wales with fitted line

Our estimate of the rate of increase of divorces is β̂1 = 5.417 and we would like to answer the
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question “Is the divorce rate changing?” In other words, we would like to test the null hypothesis

H0 : β1 = 0

Under H0

T = β̂1√
σ̂2/Sxx

=∼ t(4)

giving

t= 5.417√
16.294/17.5

= 5.614.

We therefore have strong evidence to reject the null hypothesis that the divorce rate is not
changing; that is, there is strong evidence of an increasing divorce rate.
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Example 7. — US Cars :
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More examples here.

https://sway.com/E5ywW9CW3uNXJdOH
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Example 8. You recorded the speed of 7 individual vehicles on a highway segment with posted
speed limit of 55 mph, Y , in mph, and the rainfall, X, at the time of each particular measurement,
in millimeters per hour, mm/h. The following descriptive statistics were obtained:

∑
xi

∑
yi

∑
xiyi

∑
x2
i

∑
y2
i n

125 377.44 5846.55 3012.5 21,580.36 7

(a) Find the linear regression model ŷ = β̂0 + β̂1x and interpret the meaning of the estimated
parameters in this case.
(b) Conduct a hypothesis test (5% significance level) to determine whether rainfall is a useful
linear predictor of vehicle speeds.
(c) Use hypotheses testing to assess whether or not the average speed in this highway exceeds the
speed limit by 10 mph on non-rainy days.
(d) Consider the confidence interval for the speed of a particular vehicle. At what level of rainfall
is this interval the narrowest? Calculate this interval and interpret its meeting.
(e) Test the hypotheses that the true variance of the regression model is at least 100.
(f) Estimate the probability that an individual driver will be traveling at 10 mph over the speed
limit.
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Solution:
Sxx =

∑
(xi− x̄)2

=
∑

x2
i −nx̄2

= 780.36
Sxy =

∑
(xi− x̄)(Yi− Ȳ )

=
∑

xiYi−nx̄Ȳ
= −893.45

Syy =
∑

(Yi− Ȳ )2

=
∑

Y 2
i −nȲ 2

= 1228.80
β̂1 = Sxy

Sxx
= −1.1449

β̂0 = ȳ−β1x̄

= 74.365
SSE = Syy− β̂1Sxy

= 205.89
σ̂2 = SSE

n−2
= 41.178



92 Chapter 7. Linear regression

(a)

ŷ = β̂0 + β̂1x

= 74.365−1.1449x̂

In this straight line, which shows the relationship between vehicle speed (Y) and rainfall (X), the
intercept β̂0 is average speed when a non-rainy day, and the slope β̂1 represents the change in vehicle
speed due to a unit change in the rainfall.

(b) We test H0 : β1 = 0 against H1 6= 0

| β̂1
σ̂/
√
Sxx
| = | −1.1449√

41.178/
√

780.36
|

= 4.98> t0.025,5 = 2.5706

so we reject H0 which means rainfall is a useful linear predictor of vehicle speeds.

(c) We test H0 : β0 + β1x = 65 against H1 : β0 + β1x > 65, but on a non-rainy day, x = 0, so
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we are testing H0 : β0 = 65 against H1 : β0 > 65

V ar(β̂0) = σ̂2
∑
x2
i

nSxx

= 41.178× 3012.5
7×780.36

= 22.709
β̂0−65√
V ar(β̂0)

= 74.365−65√
22.709

= 1.9652< t0.05,5 = 2.0150

so we accept H0, which means vehicle speeds do not exceed the speed limit by 10 mph on non-rainy
days.
(d) The confidence interval is narrowest when rainfall level equals its average value: x0 = x̄= 17.86:
the 95% confidence interval is

β̂0 + β̂1x0± tα/2,n−2 σ̂

√
1 + 1

n
+ (x0− x̄)2

Sxx
= 74.365−1.1449×17.86±2.0150×6.85

= 53.92±13.82
= (40.10,67.74)
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so the confidence interval for vehicle speed when rainfall level is 17.86 mm/h is (40.10, 67.74) mph.
As with any confidence interval, the interpretation is that the method we use to compute this interval
will contain a realization of a particular vehicle speed 95% of the time; that is, if the experiment of
taking a sample and computing this interval is repeated many times, then on average 95% of those
intervals will contain a realization of a particular vehicle speed when x0 = x̄.
We cannot say: “This means, when rainfall level is 17.86 mm/h, the probability that vehicle speed
is between 40.10 and 67.74 mph is 0.95."
(e)

H0 : σ2 = 100
H1 : σ2 > 100

C2 = (7−2)σ̂2

100 ∼ χ2
n−2

= 2.0589
Because 2.0589< χ2

df=5,α=0.05 = 11.07, we cannot reject H0.
(f) Since rainfall is not specified, we assume x0 = x̄:

ŷ = β̂0 + β̂1x0
= 74.365−1.1449×17.86 = 53.92
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Since Y is normally distributed with this mean and variance: σ̂
√

1 + 1
n + (x0−x̄)2

Sxx
= 6.85, we get

P (Y > 75) = 1−Φ(75−53.92
6.85 )

= 0.053

and the probability that an individual driver will be traveling at 10 mph over the speed limit is
5.3%.

�
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7.10 Problems
Problem 7.1 — Pedestrian Fatalities in Georgia. The number of yearly pedestrian fatalities in the
state of Georgia (Y ) is presented below for the years 2007-2013 (x= 1 means year 2007). Source.
Given the data summary, answer the following questions.

http://www.gahighwaysafety.org/research/ga-crashes/injuries/fatalities/
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a) Find the linear regression model y = β̂0 + β̂1x and interpret the meaning of the estimated
parameters in this case.
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b) Calculate σ̂2 and R2 and interpret their meaning.
c) Would you say there is statistical evidence suggesting an increasing trend in pedestrian

fatalities?
d) Use the model to test the hypotheses that the expected number of pedestrian fatalities in 2017

(x=11) will be less than 120.
e) Use the model to test the hypotheses that the true variance of the regression model is less

than 200.
Problem 7.2 — Seatbelt compliance in Georgia. Data for seatbelt compliance is presented below
for the years 2007-2013 (x = 1 means year 2007). Source. Given the data summary, answer the
following questions.

http://www.gahighwaysafety.org/research/ga-crashes/injuries/fatalities/
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a) Find the linear regression model for seatbelt compliance ŷ= β̂0 + β̂1x and interpret the meaning
of the estimated parameters in this case.
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b) Calculate σ̂2 and R2 and interpret their meaning.
c) Would you say there is statistical evidence suggesting an increasing trend in seatbelt compliance

?
d) Use the model to test the hypotheses that the expected seatbelt compliance in 2017 (x=11)

will be less than 0.95.
e) Use the model to test the hypotheses that the true variance of the regression model is less

than 200.
Problem 7.3 —Washington low-income, transit-reliant residents. This article (https://goo.gl/omGFCd)
appeared recently on the Washington Post, analyzes the relationship between income and transit
usage in the D.C. area. The data can be summarized in the following figures.

https://www.washingtonpost.com/graphics/local/transit-access/?utm_term=.37b3d85820a0
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The author of the article, however, did not give any statistical foundations to his observations and
conclusions, the most prominent of which is that “D.C. has a higher concentration of low-income,
transit-reliant residents than nearby counties in Virginia and Maryland."
You are asked to use the DC data and Virginia data to fill this gap by using the statistical techniques
that you deem appropriate to verify/disprove the claims in this article. It is expected that you use

https://1drv.ms/u/s!AqiKEoSG1Y54gdx6T-6NK7yBagct7A
https://1drv.ms/u/s!AqiKEoSG1Y54gdx9fZ988swa1NpXUw


102 Chapter 7. Linear regression

at least two techniques and that you compare and comment the results.
Problem 7.4 The figure shows the average global temperature (relative to the year 1921) from 1880
to 2005. Although it may seem obvious from the figure that the temperature is increasing at a
higher rate since the 70’s, many people believe that such an increase can be explained by random
fluctuations. The factor X denotes the number of years since 1879; i.e., 1880 corresponds to x = 1.

Sample ∑
xi

∑
yi

∑
xiyi

∑
x2
i

∑
y2
i n

1970-2005 3815 9.87 1180 419405 6.78 35
1880-1969 4186 -21.7 -693 255346 9.35 91
1880-2005 8001 -11.83 486 674751 16.13 126

a) Using the whole sample, test the hypotheses that global warming can be explained by statistical
fluctuations around a constant mean that does not grow in time.

b) Test the hypotheses that the global warming rate has increased since the 70’s (1970-2005)
compared to the rate in (1880-1969).

c) Provide a 95% confidence interval prediction for the global temperature for the year where
this interval would be the narrowest, and interpret the meaning of this interval.

d) It is believed that vehicle emissions, Z, are proportional to the square of the global temperature
due to the increased use of air conditioning. Estimate the probability that emissions in the
year 2017 will double the levels observed in year 2000.
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Example 9. From the same survey on the previous question, here we fit a simpler model with
only one factor:

Yi = β0 +β1xi+ +εi
Based on the model estimation results summarized below,

a) What would you say are the problems of the fitted model? Clearly justify your answer in
each case.

b) As you can see from the scatter plot, the 95 percent confidence interval for Y when x= 40
is between 5 and 10. How can we interpret this interval?

c) Do you agree with the slope of the regression line? Why?
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